Abstract
Pseudomonas sp. isolated by selective culture with 3-phenylbutyrate (3-PB) as the sole carbon source metabolized the compound through two different pathways by initial oxidation of the benzene ring and by initial oxidation of the side chain. During early exponential growth, a catechol substance identified as 3-(2,3-dihydroxyphenyl)butyrate (2,3-DHPB) and its meta-cleavage product 2-hydroxy-7-methyl-6-oxononadioic-2,4-dienoic acid were produced. These products disappeared during late exponential growth, and considerable amounts of 2,3-DHPB reacted to form brownish polymeric substances. The catechol intermediate 2,3-DHPB could not be isolated, but cell-free extracts were able only to oxidize 3-(2,3-dihydroxyphenyl)propionate of all dihydroxy aromatic acids tested. Moreover, a reaction product caused by dehydration of 2,3-DHPB on silica gel was isolated and identified by spectral analysis as (--)-8-hydroxy-4-methyl-3,4-dihydrocoumarin. 3-Phenylpropionate and a hydroxycinnamate were found in supernatants of cultures grown on 3-PB; phenylacetate and benzoate were found in supernatants of cultures grown on 3-phenylpropionate; and phenylacetate was found in cultures grown on cinnamate. Cells grown on 3-PB rapidly oxidized 3-phenylpropionate, cinnamate, catechol, and 3-(2,3-dihydroxyphenyl)propionate, whereas 2-phenylpropionate, 2,3-dihydroxycinnamate, benzoate, phenylacetate, and salicylate were oxidized at much slower rates. Phenylsuccinate was not utilized for growth nor was it oxidized by washed cell suspensions grown on 3-PB. However, dual axenic cultures of Pseudomonas acidovorans and Klebsiella pneumoniae, which could not grow on phenylsuccinate alone, could grow syntrophically and produced the same metabolites found during catabolism of 3-PB by Pseudomonas sp. Washed cell suspensions of dual axenic cultures also immediately oxidized phenylsuccinate, 3-phenylpropionate, cinnamate, phenylacetate, and benzoate.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADACHI K., TAKEDA Y., SENOH S., KITA H. METABOLISM OF P-HYDROXYPHENYLACETIC ACID IN PSEUDOMONAS OVALIS. Biochim Biophys Acta. 1964 Dec 9;93:483–493. doi: 10.1016/0304-4165(64)90332-0. [DOI] [PubMed] [Google Scholar]
- Baggi G., Catelani D., Galli E., Treccani V. The microbial degradation of phenylalkanes. 2-Phenylbutane, 3-phenylpentane, 3-phenyldodecane and 4-phenylheptane. Biochem J. 1972 Mar;126(5):1091–1097. doi: 10.1042/bj1261091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bird J. A., Cain R. B. Microbial degradation of alkylbenzenesulphonates. Metabolism of homologues of short alkyl-chain length by an Alcaligenes sp. Biochem J. 1974 May;140(2):121–134. doi: 10.1042/bj1400121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollag J. M., Sjoblad R. D., Minard R. D. Polymerization of phenolic intermediates of pesticides by a fungal enzyme. Experientia. 1977 Dec 15;33(12):1564–1566. doi: 10.1007/BF01933998. [DOI] [PubMed] [Google Scholar]
- Dagley S. Catabolism of aromatic compounds by micro-organisms. Adv Microb Physiol. 1971;6(0):1–46. doi: 10.1016/s0065-2911(08)60066-1. [DOI] [PubMed] [Google Scholar]
- Dagley S., Chapman P. J., Gibson D. T. The metabolism of beta-phenylpropionic acid by an Achromobacter. Biochem J. 1965 Dec;97(3):643–650. doi: 10.1042/bj0970643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson D. T., Mahadevan V., Davey J. F. Bacterial metabolism of para- and meta-xylene: oxidation of the aromatic ring. J Bacteriol. 1974 Sep;119(3):930–936. doi: 10.1128/jb.119.3.930-936.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Sariaslani F. S., Harper D. B., Higgins I. J. Microbial degradation of hydrocarbons. Catabolism of 1-phenylalkanes by Nocardia salmonicolor. Biochem J. 1974 Apr;140(1):31–45. doi: 10.1042/bj1400031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sjoblad R. D., Bollag J. M. Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase. Appl Environ Microbiol. 1977 Apr;33(4):906–910. doi: 10.1128/aem.33.4.906-910.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Linden A. C., Thijsse G. J. The mechanisms of microbial oxidations of petroleum hydrocarbons. Adv Enzymol Relat Areas Mol Biol. 1965;27:469–546. doi: 10.1002/9780470122723.ch10. [DOI] [PubMed] [Google Scholar]
