Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Oct;152(1):411–421. doi: 10.1128/jb.152.1.411-421.1982

Degradation of 3-phenylbutyric acid by Pseudomonas sp.

F S Sariaslani, J L Sudmeier, D D Focht
PMCID: PMC221431  PMID: 7118830

Abstract

Pseudomonas sp. isolated by selective culture with 3-phenylbutyrate (3-PB) as the sole carbon source metabolized the compound through two different pathways by initial oxidation of the benzene ring and by initial oxidation of the side chain. During early exponential growth, a catechol substance identified as 3-(2,3-dihydroxyphenyl)butyrate (2,3-DHPB) and its meta-cleavage product 2-hydroxy-7-methyl-6-oxononadioic-2,4-dienoic acid were produced. These products disappeared during late exponential growth, and considerable amounts of 2,3-DHPB reacted to form brownish polymeric substances. The catechol intermediate 2,3-DHPB could not be isolated, but cell-free extracts were able only to oxidize 3-(2,3-dihydroxyphenyl)propionate of all dihydroxy aromatic acids tested. Moreover, a reaction product caused by dehydration of 2,3-DHPB on silica gel was isolated and identified by spectral analysis as (--)-8-hydroxy-4-methyl-3,4-dihydrocoumarin. 3-Phenylpropionate and a hydroxycinnamate were found in supernatants of cultures grown on 3-PB; phenylacetate and benzoate were found in supernatants of cultures grown on 3-phenylpropionate; and phenylacetate was found in cultures grown on cinnamate. Cells grown on 3-PB rapidly oxidized 3-phenylpropionate, cinnamate, catechol, and 3-(2,3-dihydroxyphenyl)propionate, whereas 2-phenylpropionate, 2,3-dihydroxycinnamate, benzoate, phenylacetate, and salicylate were oxidized at much slower rates. Phenylsuccinate was not utilized for growth nor was it oxidized by washed cell suspensions grown on 3-PB. However, dual axenic cultures of Pseudomonas acidovorans and Klebsiella pneumoniae, which could not grow on phenylsuccinate alone, could grow syntrophically and produced the same metabolites found during catabolism of 3-PB by Pseudomonas sp. Washed cell suspensions of dual axenic cultures also immediately oxidized phenylsuccinate, 3-phenylpropionate, cinnamate, phenylacetate, and benzoate.

Full text

PDF
411

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADACHI K., TAKEDA Y., SENOH S., KITA H. METABOLISM OF P-HYDROXYPHENYLACETIC ACID IN PSEUDOMONAS OVALIS. Biochim Biophys Acta. 1964 Dec 9;93:483–493. doi: 10.1016/0304-4165(64)90332-0. [DOI] [PubMed] [Google Scholar]
  2. Baggi G., Catelani D., Galli E., Treccani V. The microbial degradation of phenylalkanes. 2-Phenylbutane, 3-phenylpentane, 3-phenyldodecane and 4-phenylheptane. Biochem J. 1972 Mar;126(5):1091–1097. doi: 10.1042/bj1261091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bird J. A., Cain R. B. Microbial degradation of alkylbenzenesulphonates. Metabolism of homologues of short alkyl-chain length by an Alcaligenes sp. Biochem J. 1974 May;140(2):121–134. doi: 10.1042/bj1400121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bollag J. M., Sjoblad R. D., Minard R. D. Polymerization of phenolic intermediates of pesticides by a fungal enzyme. Experientia. 1977 Dec 15;33(12):1564–1566. doi: 10.1007/BF01933998. [DOI] [PubMed] [Google Scholar]
  5. Dagley S. Catabolism of aromatic compounds by micro-organisms. Adv Microb Physiol. 1971;6(0):1–46. doi: 10.1016/s0065-2911(08)60066-1. [DOI] [PubMed] [Google Scholar]
  6. Dagley S., Chapman P. J., Gibson D. T. The metabolism of beta-phenylpropionic acid by an Achromobacter. Biochem J. 1965 Dec;97(3):643–650. doi: 10.1042/bj0970643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson D. T., Mahadevan V., Davey J. F. Bacterial metabolism of para- and meta-xylene: oxidation of the aromatic ring. J Bacteriol. 1974 Sep;119(3):930–936. doi: 10.1128/jb.119.3.930-936.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Sariaslani F. S., Harper D. B., Higgins I. J. Microbial degradation of hydrocarbons. Catabolism of 1-phenylalkanes by Nocardia salmonicolor. Biochem J. 1974 Apr;140(1):31–45. doi: 10.1042/bj1400031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sjoblad R. D., Bollag J. M. Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase. Appl Environ Microbiol. 1977 Apr;33(4):906–910. doi: 10.1128/aem.33.4.906-910.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. van der Linden A. C., Thijsse G. J. The mechanisms of microbial oxidations of petroleum hydrocarbons. Adv Enzymol Relat Areas Mol Biol. 1965;27:469–546. doi: 10.1002/9780470122723.ch10. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES