Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Oct;152(1):510–513. doi: 10.1128/jb.152.1.510-513.1982

Requirement for Carbon Dioxide for Nonsymbiotic Expression of Rhizobium japonicum Nitrogenase Activity

O Mario Aguilar 1,, Gabriel Favelukes 1
PMCID: PMC221453  PMID: 6811563

Abstract

The expression and maintenance of nitrogenase (C2H2) activity in growing, microaerobic liquid cultures of Rhizobium japonicum 3I1b110 was found to be stringently dependent on the sustained supply of CO2. This requirement for CO2 appeared to exceed the basal requirement for growth and was not related to effects on pH.

Full text

PDF
510

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergersen F. J., Turner G. L., Gibson A. H., Dudman W. F. Nitrogenase activity and respiration of cultures of Rhizobium spp. with special reference to concentrations of dissolved oxygen. Biochim Biophys Acta. 1976 Aug 24;444(1):164–174. doi: 10.1016/0304-4165(76)90233-6. [DOI] [PubMed] [Google Scholar]
  2. Bergersen F. J., Turner G. L. Leghaemoglobin and the supply of O2 to nitrogen-fixing root nodule bacteroids: presence of two oxidase systems and ATP production at low free O2 concentration. J Gen Microbiol. 1975 Dec;91(2):345–354. doi: 10.1099/00221287-91-2-345. [DOI] [PubMed] [Google Scholar]
  3. Bergersen F. J., Turner G. L. The role of O2-limitation in control of nitrogenase in continuous cultures of Rhizobrium sp. Biochem Biophys Res Commun. 1976 Nov 22;73(2):524–531. doi: 10.1016/0006-291x(76)90738-5. [DOI] [PubMed] [Google Scholar]
  4. Keister D. L. Acetylene reduction by pure cultures of Rhizobia. J Bacteriol. 1975 Sep;123(3):1265–1268. doi: 10.1128/jb.123.3.1265-1268.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Keister D. L., Evans W. R. Oxygen requirement for acetylene reduction by pure cultures of rhizobia. J Bacteriol. 1976 Jul;127(1):149–153. doi: 10.1128/jb.127.1.149-153.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Ludwig R. A., Signer E. R. Glutamine synthetase and control of nitrogen fixation in Rhizobium. Nature. 1977 May 19;267(5608):245–248. doi: 10.1038/267245a0. [DOI] [PubMed] [Google Scholar]
  8. O'Gara F., Shanmugam K. T. Regulation of nitrogen fixation by Rhizobia. Export of fixed N2 as NH+4. Biochim Biophys Acta. 1976 Jul 21;437(2):313–321. doi: 10.1016/0304-4165(76)90001-5. [DOI] [PubMed] [Google Scholar]
  9. Scott D. B., Hennecke H., Lim S. T. The biosynthesis of nitrogenase MoFe protein polypeptides in free-living cultures of Rhizobium japonicum. Biochim Biophys Acta. 1979 Dec 17;565(2):365–378. doi: 10.1016/0005-2787(79)90212-0. [DOI] [PubMed] [Google Scholar]
  10. Tjepkema J., Evans H. J. Nitrogen fixation by free-living Rhizobium in a defined liquid medium. Biochem Biophys Res Commun. 1975 Jul 22;65(2):625–628. doi: 10.1016/s0006-291x(75)80192-6. [DOI] [PubMed] [Google Scholar]
  11. Werner D., Stripf R. Differentiation of Rhizobium japonicum, I. enzymatic comparison of nitrogenase repressed and derepressed free living cells and of bacteroids. Z Naturforsch C. 1978 Mar-Apr;33(3-4):245–252. doi: 10.1515/znc-1978-3-413. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES