Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1975 Jan 1;65(1):22–45. doi: 10.1085/jgp.65.1.22

Micropuncture analysis of the cellular mechanisms of electrolyte secretion by the in vitro rabbit pancreas

PMCID: PMC2214863  PMID: 234144

Abstract

Micropuncture techniques have been used to study electrolyte secretion by the spontaneously secreting in vitro rabbit pancreas over a wide range of environmental conditions. Pancreatic secretion does not have a strong requirement for HCO3 and secretion continues at nearly normal rates when exogenous HCO3 is replaced by acetate. Acetate concentration in the juice averages 70 meq/liter, nearly three times the environmental concentration. The similar characteristics exhibited by HCO3 and acetate secretion indicate that they are secreted by a common mechanism involving active H transport. In vitro acid-base alterations demonstrate that the secretion rate is controlled by the environmental HCO3 concentration and to a much lesser extent by the pCO2. Secretion also requires active Na transport across the mucosal membrane. The effects of ouabain and a low Na environment strongly suggest coupling between the transport of Na and H and a cellular mechanism for electrolyte secretion is proposed involving Na-H exchange mechanisms at both the mucosal and serosal membranes.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Case R. M., Harper A. A., Scratcherd T. The secretion of electrolytes and enzymes by the pancreas of the anaesthetized cat. J Physiol. 1969 Apr;201(2):335–348. doi: 10.1113/jphysiol.1969.sp008759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Case R. M., Harper A. A., Scratcherd T. Water and electrolyte secretion by the perfused pancreas of the cat. J Physiol. 1968 May;196(1):133–149. doi: 10.1113/jphysiol.1968.sp008499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GILL T. J., 3rd, GOLD G. L., SOLOMON A. K. The kinetics of cardiac glycoside inhibition of potassium transport in human erythrocytes. J Gen Physiol. 1956 Nov 20;40(2):327–350. doi: 10.1085/jgp.40.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Pak B. H., Hong S. S., Pak H. K., Hong S. K. Effects of acetazolamide and acid-base changes on biliary and pancreatic secretion. Am J Physiol. 1966 Mar;210(3):624–628. doi: 10.1152/ajplegacy.1966.210.3.624. [DOI] [PubMed] [Google Scholar]
  6. RAWLS J. A., Jr, WISTRAND P. J., MAREN T. H. EFFECTS OF ACID-BASE CHANGES AND CARBONIC ANHYDRASE INHIBITION ON PANCREATIC SECRETION. Am J Physiol. 1963 Oct;205:651–657. doi: 10.1152/ajplegacy.1963.205.4.651. [DOI] [PubMed] [Google Scholar]
  7. Rothman S. S., Brooks F. P. Pancreatic secretion in vitro in "Cl-free," "Co-2-free," and low-Na+environment. Am J Physiol. 1965 Oct;209(4):790–796. doi: 10.1152/ajplegacy.1965.209.4.790. [DOI] [PubMed] [Google Scholar]
  8. Schulz I., Ströver F., Ullrich K. J. Lipid soluble weak organic acid buffers as "substrate" for pancreatic secretion. Pflugers Arch. 1971;323(2):121–140. doi: 10.1007/BF00586444. [DOI] [PubMed] [Google Scholar]
  9. Schulz I., Yamagata A., Weske M. Micropuncture studies on the pancreas of the rabbit. Pflugers Arch. 1969;308(3):277–290. doi: 10.1007/BF00586559. [DOI] [PubMed] [Google Scholar]
  10. Swanson C. H., Soilomon A. K. Evidence for Na-H exchange in the rabbit pancreas. Nat New Biol. 1972 Apr 12;236(67):183–184. doi: 10.1038/newbio236183a0. [DOI] [PubMed] [Google Scholar]
  11. Swanson C. H., Solomon A. K. A micropuncture investigation of the whole tissue mechanism of electrolyte secretion by the in vitro rabbit pancreas. J Gen Physiol. 1973 Oct;62(4):407–429. doi: 10.1085/jgp.62.4.407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES