Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1975 Feb 1;65(2):135–152. doi: 10.1085/jgp.65.2.135

Sensitivity of calcium efflux from squid axons to changes in membrane potential

PMCID: PMC2214866  PMID: 1117279

Abstract

Squid giant axons were internally dialyzed with a medium free of metabolic substrates but containing 45Ca buffered with EGTA to concentrations of free Ca++ in the range 0.01-230 muM. At (Ca)i of 1.0 muM OR GREATER, Ca efflux was in the range of 1-3 pmol/cm2 s, was dependent on (Na)o and (Ca)o, and was sensitive to membrane potential. At lower (Ca)i, the sensitivity of Ca efflux to membrane potential was greater. Hyperpolarization of the membrane increased, and depolarization decreased Ca efflux over the range of potentials studied (-20 to -100 mV). The maximum sensitivity of Ca efflux to membrane potential was of the order of an e-fold increase in Ca efflux for a 25- mV increase in Em; this sensitivity of Ca efflux to membrane potential was lost if (Na)o was removed and was greatly reduced when (Ca)i was increased to 230 muM.

Full Text

The Full Text of this article is available as a PDF (936.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Hodgkin A. L., Ridgway E. B. Depolarization and calcium entry in squid giant axons. J Physiol. 1971 Nov;218(3):709–755. doi: 10.1113/jphysiol.1971.sp009641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brinley F. J., Jr, Mullins L. J. Sodium extrusion by internally dialyzed squid axons. J Gen Physiol. 1967 Nov;50(10):2303–2331. doi: 10.1085/jgp.50.10.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dipolo R. Calcium efflux from internally dialyzed squid giant axons. J Gen Physiol. 1973 Nov;62(5):575–589. doi: 10.1085/jgp.62.5.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dipolo R. Effect of ATP on the calcium efflux in dialyzed squid giant axons. J Gen Physiol. 1974 Oct;64(4):503–517. doi: 10.1085/jgp.64.4.503. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES