Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1975 Mar 1;65(3):293–213. doi: 10.1085/jgp.65.3.293

Metabolism of acetylcholine in the nervous system of Aplysia californica. III. Studies of an indentified cholinergic neuron

PMCID: PMC2214876  PMID: 1117284

Abstract

[3H] choline and [3H] acetyl CoA were injected into the cell body of an identified cholinergic neuron, the giant R2 of the Aplysia abdominal ganglion, and the fate and distribution of the radioactivity studied. Direct eveidence was obtained that the availabliity of choline to the enzymatic machinery limits synthesis. [3H] choline injected intrasomatically was converted to acetylcholine far more efficiently than choline taken up into the cell body from the bath. Synthesis from injected [3H] acety CoA was increased more than an order of magnitude when the cosubstrate was injected together with a saturating amount of unlabeled choline. In order to study the kinetics of acetylcholine synthesis in the living neuron, we injected [3H] choline in amounts resulting in a range of intracellular concentrations of about four orders of magnitude. The maximal velocity was 300 pmol of acetylcholine/cell/h and the Michaelis constant was 5.9 mM [3H] choline; these values agreed well with those previously reported for choline acetyltransferase assayed in extracts of Aplysia nervous tissue. [3H] acetylcholine turned over within the injected neuron with a half-life of about 9 h. The ultimate product formed was betaine. Subcellular distribution of [3H] acetylcholine was studied using differential and gradient centrifuagtion, gel filtration, and passage through cellulose acetate filters. A small portion of acetylcholine was contained in particulates the size and density expected of cholinergic vesicles.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambron R. T., Goldman J. E., Schwartz J. H. Axonal transport of newly synthesized glycoproteins in a single identified neuron of Aplysia californica. J Cell Biol. 1974 Jun;61(3):665–675. doi: 10.1083/jcb.61.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coggeshall R. E. A light and electron microscope study of the abdominal ganglion of Aplysia californica. J Neurophysiol. 1967 Nov;30(6):1263–1287. doi: 10.1152/jn.1967.30.6.1263. [DOI] [PubMed] [Google Scholar]
  3. Collier B., Katz H. S. The synthesis, turnover and release of surplus acetylcholine in a sympathetic ganglion. J Physiol. 1971 May;214(3):537–552. doi: 10.1113/jphysiol.1971.sp009447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dowdall M. J., Simon E. J. Comparative studies on synaptosomes: uptake of (N-Me-3H)choline by synaptosomes from squid optic lobes. J Neurochem. 1973 Oct;21(4):969–982. doi: 10.1111/j.1471-4159.1973.tb07541.x. [DOI] [PubMed] [Google Scholar]
  5. Eisenstadt M. L., Treistman S. N., Schwartz J. H. Metabolism of acetylcholine in the nervous system of Aplysia californica. II. Reginal localization and characterization of choline uptake. J Gen Physiol. 1975 Mar;65(3):275–291. doi: 10.1085/jgp.65.3.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenstadt M., Goldman J. E., Kandel E. R., Koike H., Koester J., Schwartz J. H. Intrasomatic injection of radioactive precursors for studying transmitter synthesis in identified neurons of Aplysia californica. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3371–3375. doi: 10.1073/pnas.70.12.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Florey E., Winesdorfer J. Cholinergic nerve endings in octopus brain. J Neurochem. 1968 Mar;15(3):169–177. doi: 10.1111/j.1471-4159.1968.tb06192.x. [DOI] [PubMed] [Google Scholar]
  8. Israël M., Gautron J., Lesbats B. Fractionnement de l'organe electrique de la torpille: localisation subcellulaire de l'acetylcholine. J Neurochem. 1970 Oct;17(10):1441–1450. doi: 10.1111/j.1471-4159.1970.tb00511.x. [DOI] [PubMed] [Google Scholar]
  9. Kaita A. A., Goldberg A. M. Control of acetylcholine synthesis--the inhibition of choline acetyltransferase by acetylcholine. J Neurochem. 1969 Jul;16(7):1185–1191. doi: 10.1111/j.1471-4159.1969.tb05964.x. [DOI] [PubMed] [Google Scholar]
  10. Koike H., Dandel E. R., Schwartz J. H. Synaptic release of radioactivity after intrasomatic injection of choline-3H into an identified cholinergic interneuron in abdominal ganglion of Aplysia californica. J Neurophysiol. 1974 Jul;37(4):815–827. doi: 10.1152/jn.1974.37.4.815. [DOI] [PubMed] [Google Scholar]
  11. Kuhar M. J., Sethy V. H., Roth R. H., Aghajanian G. K. Choline: selective accumulation by central cholinergic neurons. J Neurochem. 1973 Feb;20(2):581–593. doi: 10.1111/j.1471-4159.1973.tb12157.x. [DOI] [PubMed] [Google Scholar]
  12. Marchbanks R. M., Israël M. Aspects of acetylcholine metabolism in the electric organ of Torpedo marmorata. J Neurochem. 1971 Mar;18(3):439–448. doi: 10.1111/j.1471-4159.1971.tb11971.x. [DOI] [PubMed] [Google Scholar]
  13. McCaman R. E., Weinreich D., Borys H. Endogenous levels of acetylcholine and choline in individual neurons of Aplysia. J Neurochem. 1973 Aug;21(2):473–476. doi: 10.1111/j.1471-4159.1973.tb04267.x. [DOI] [PubMed] [Google Scholar]
  14. Potter L. T. Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J Physiol. 1970 Jan;206(1):145–166. doi: 10.1113/jphysiol.1970.sp009003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richter J. A., Marchbanks R. M. Isolation of ( 3 H) acetylcholine pools by subcellular fractionation of cerebral cortex slices incubated with ( 3 H) choline. J Neurochem. 1971 May;18(5):705–712. doi: 10.1111/j.1471-4159.1971.tb12000.x. [DOI] [PubMed] [Google Scholar]
  16. Schwartz J. H., Eisenstadt M. L., Cedar H. Metabolism of acetylcholine in the nervous system of Aplysia californica. I. Source of choline and its uptake by intact nervous tissue. J Gen Physiol. 1975 Mar;65(3):255–273. doi: 10.1085/jgp.65.3.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Treistman S. N., Schwartz J. H. Injection of radioactive materials into an identified axon of Aplysia. Brain Res. 1974 Mar 22;68(2):358–364. doi: 10.1016/0006-8993(74)90405-3. [DOI] [PubMed] [Google Scholar]
  18. Whittaker V. P. The application of subcellular fractionation techniques to the study of brain function. Prog Biophys Mol Biol. 1965;15:39–96. doi: 10.1016/0079-6107(65)90004-0. [DOI] [PubMed] [Google Scholar]
  19. Wilson W. S., Schulz R. A., Cooper J. R. The isolation of cholinergic synaptic vesicles from bovine superior cervical ganglion and estimation of their acetylcholine content. J Neurochem. 1973 Mar;20(3):659–667. doi: 10.1111/j.1471-4159.1973.tb00026.x. [DOI] [PubMed] [Google Scholar]
  20. Yamamura H. I., Snyder S. H. Choline: high-affinity uptake by rat brain synaptosomes. Science. 1972 Nov 10;178(4061):626–628. doi: 10.1126/science.178.4061.626. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES