Abstract
The permeability coefficients of a homologous series of amides from formamide through valeramide have been measured in spherical bilayers prepared by the method described by Jung. They do not depend directly on the water:ether partition coefficient which increases regularly with chain length. Instead there is a minimum at acetamide. This has been ascribed to the effect of steric hindrance on diffusion within the bilayer which increases with solute molar volume. This factor is of the same magnitude, though opposite in sign to the effect of lipid solubility, thus accounting for the minimum. The resistance to passage across the interface has been compared to the resistance to diffusion within the membrane. As the solute chain length increases the interface becomes more important, until for valeramide it comprises about 90% of the total resistance. Interface resistance is also important in urea permeation, causing urea to permeate much more slowly than an amide of comparable size, after allowance is made for the difference in the water:ether partition coefficient. Amide permeation coefficients have been compared with relative liposome permeation data measured by the rate of liposome swelling. The ratios of the two measures of permeation vary between 3 and 16 for the homologous amides. The apparent enthalpy of liposome permeation has been measured and found to be in the neighborhood of 12 kcal mol-1 essentially independent of chain length. Comparison of the bilayer permeability coefficients with those of red cells shows that red cell permeation by the lipophilic solutes resembles that of the bilayers, whereas permeation by the hydrophilic solutes differs significantly.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreoli T. E., Dennis V. W., Weigl A. M. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes. J Gen Physiol. 1969 Feb;53(2):133–156. doi: 10.1085/jgp.53.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruckdorfer K. R., Demel R. A., De Gier J., van Deenen L. L. The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes. Biochim Biophys Acta. 1969 Jul 15;183(2):334–345. doi: 10.1016/0005-2736(69)90089-3. [DOI] [PubMed] [Google Scholar]
- Cass A., Finkelstein A. Water permeability of thin lipid membranes. J Gen Physiol. 1967 Jul;50(6):1765–1784. doi: 10.1085/jgp.50.6.1765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherry R. J., Chapman D. Optical properties of black lecithin films. J Mol Biol. 1969 Feb 28;40(1):19–32. doi: 10.1016/0022-2836(69)90293-9. [DOI] [PubMed] [Google Scholar]
- Cohen B. E., Bangham A. D. Diffusion of small non-electrolytes across liposome membranes. Nature. 1972 Mar 24;236(5343):173–174. doi: 10.1038/236173a0. [DOI] [PubMed] [Google Scholar]
- De Gier J., Mandersloot J. G., Hupkes J. V., McElhaney R. N., Van Beek W. P. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes. Biochim Biophys Acta. 1971 Jun 1;233(3):610–618. doi: 10.1016/0005-2736(71)90160-x. [DOI] [PubMed] [Google Scholar]
- Everitt C. T., Redwood W. R., Haydon D. A. Problem of boundary layers in the exchange diffusion of water across bimolecular lipid membranes. J Theor Biol. 1969 Jan;22(1):20–32. doi: 10.1016/0022-5193(69)90077-0. [DOI] [PubMed] [Google Scholar]
- GINZBURG B. Z., KATCHALSKY A. THE FRICTIONAL COEFFICIENTS OF THE FLOWS OF NON-ELECTROLYTES THROUGH ARTIFICIAL MEMBRANES. J Gen Physiol. 1963 Nov;47:403–418. doi: 10.1085/jgp.47.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galey W. R., Owen J. D., Solomon A. K. Temperature dependence of nonelectrolyte permeation across red cell membranes. J Gen Physiol. 1973 Jun;61(6):727–746. doi: 10.1085/jgp.61.6.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallucci E., Micelli S., Lippe C. Non-electrolyte permeability across thin lipid membranes. Arch Int Physiol Biochim. 1971 Dec;79(5):881–887. doi: 10.3109/13813457109104847. [DOI] [PubMed] [Google Scholar]
- Hanai T., Haydon D. A. The permeability to water of bimolecular lipid membranes. J Theor Biol. 1966 Aug;11(3):370–382. doi: 10.1016/0022-5193(66)90099-3. [DOI] [PubMed] [Google Scholar]
- Holz R., Finkelstein A. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol. 1970 Jul;56(1):125–145. doi: 10.1085/jgp.56.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lange Y., Bobo C. M., Solomon A. K. Nonelectrolyte diffusion through lecithin-water lamellar phases and red-cell membranes. Biochim Biophys Acta. 1974 Mar 29;339(3):347–358. doi: 10.1016/0005-2736(74)90161-8. [DOI] [PubMed] [Google Scholar]
- Lelievre J., Rich G. T. The permeability of lipid membranes to non-electrolytes. Biochim Biophys Acta. 1973 Feb 27;298(1):15–26. doi: 10.1016/0005-2736(73)90004-7. [DOI] [PubMed] [Google Scholar]
- Lippe C., Gallucci E., Storelli C. Permeabilities of ethylene glycol and glycerol through lipid bilayer membranes and some epithelia. Arch Int Physiol Biochim. 1971 Apr;79(2):315–318. doi: 10.3109/13813457109085313. [DOI] [PubMed] [Google Scholar]
- Macey R. I., Farmer R. E. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta. 1970 Jul 7;211(1):104–106. doi: 10.1016/0005-2736(70)90130-6. [DOI] [PubMed] [Google Scholar]
- Owen J. D., Solomon A. K. Control of nonelectrolyte permeability in red cells. Biochim Biophys Acta. 1972 Dec 1;290(1):414–418. doi: 10.1016/0005-2736(72)90087-9. [DOI] [PubMed] [Google Scholar]
- Owen J. D., Steggall M., Eyring E. M. The effect of phloretin on red cell nonelectrolyte permeability. J Membr Biol. 1974;19(1):79–92. doi: 10.1007/BF01869971. [DOI] [PubMed] [Google Scholar]
- Pagano R., Thompson T. E. Spherical lipid bilayer membranes. Biochim Biophys Acta. 1967 Dec 5;144(3):666–669. doi: 10.1016/0005-2760(67)90055-0. [DOI] [PubMed] [Google Scholar]
- Roth S., Seeman P. The membrane concentrations of neutral and positive anesthetics (alcohols, chlorpromazine, morphine) fit the Meyer-Overton rule of anesthesia; negative narcotics do not. Biochim Biophys Acta. 1972 Jan 17;255(1):207–219. doi: 10.1016/0005-2736(72)90023-5. [DOI] [PubMed] [Google Scholar]
- SINGLETON W. S., GRAY M. S., BROWN M. L., WHITE J. L. CHROMATOGRAPHICALLY HOMOGENEOUS LECITHIN FROM EGG PHOSPHOLIPIDS. J Am Oil Chem Soc. 1965 Jan;42:53–56. doi: 10.1007/BF02558256. [DOI] [PubMed] [Google Scholar]
- Seeman P., Roth S., Schneider H. The membrane concentrations of alcohol anesthetics. Biochim Biophys Acta. 1971 Feb 2;225(2):171–184. doi: 10.1016/0005-2736(71)90210-0. [DOI] [PubMed] [Google Scholar]
- Sha'afi R. I., Gary-Bobo C. M., Solomon A. K. Permeability of red cell membranes to small hydrophilic and lipophilic solutes. J Gen Physiol. 1971 Sep;58(3):238–258. doi: 10.1085/jgp.58.3.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solomon A. K. Characterization of biological membranes by equivalent pores. J Gen Physiol. 1968 May;51(5 Suppl):335S+–335S+. [PubMed] [Google Scholar]
- Solomon A. K., Gary-Bobo C. M. Aqueous pores in lipid bilayers and red cell membranes. Biochim Biophys Acta. 1972 Mar 17;255(3):1019–1021. doi: 10.1016/0005-2736(72)90416-6. [DOI] [PubMed] [Google Scholar]
- Toyoshima Y., Thompson T. E. Chloride flux in bilayer membranes: the electrically silent chloride flux in semispherical bilayers. Biochemistry. 1975 Apr 8;14(7):1518–1524. doi: 10.1021/bi00678a027. [DOI] [PubMed] [Google Scholar]
- de Kruijff B., Demel R. A. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. 3. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta. 1974 Feb 26;339(1):57–70. doi: 10.1016/0005-2736(74)90332-0. [DOI] [PubMed] [Google Scholar]