Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1976 Jan 1;67(1):81–90. doi: 10.1085/jgp.67.1.81

Sodium flux through the sodium channels of axon membrane fragments isolated from lobster nerves

PMCID: PMC2214916  PMID: 1245836

Abstract

The efflux of 22Na from vesicles formed by axolemma fragments isolated from lobster nerves was studied in the presence and in the absence of drugs having well-known action on the sodium channels. The vesicles were equilibrated 12-14 h at 4 degrees C with 22Na in lobster solution containing 1 mM ouabain. Afterwards the suspension was divided: one portion was used as control and the others were treated with veratrine (0.025-0.50 mg/ml), tetrodotoxin (1-2,000 nM) in the presence of veratrine, or tetrodotoxin alone. After 3 h at 20-22 degrees C, the suspensions were diluted into nonradioactive solutions and the 22Na efflux followed by a rapid filtration technique. The results revealed that veratrine increases the efflux rate and the additional application of tetrodotoxin abolishes it, e.g., 0.50 mg of veratrine/ml increases the rate, expressed in 10(-2) min(-1), from 0.59 +/- 0.04 (mean +/- SEM; n = 13) to 0.86 +/- 0.05 (n = 13), and the addition of 100 nM tetrodotoxin diminishes it to 0.48 +/- 0.07 (n = 4). This increase and diminution are statistically significant (P less than 0.005), but this is not the case between the control and the veratrine plus tetrodotoxin values (P greater than 0.05). 50% of the diminution is produced by 11.9 +/- 2.4 nM tetrodotoxin. Tetrodotoxin alone produces a slight diminution of the 22Na efflux. Batrachotoxin (0.50 muM) has an action similar to veratrine's. These findings are considered evidence of the presence of functioning sodium channels in the isolated axolemma fragments.

Full Text

The Full Text of this article is available as a PDF (647.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albuquerque E. X. The mode of action of batrachotoxin. Fed Proc. 1972 May-Jun;31(3):1133–1138. [PubMed] [Google Scholar]
  2. Benzer T. I., Raftery M. A. Partial characterization of a tetrodotoxin-binding component from nerve membrane. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3634–3637. doi: 10.1073/pnas.69.12.3634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Camejo G., Villegas G. M., Barnola F. V., Villegas R. Characterization of two different membrane fractions isolated from the first stellar nerves of the squid Dosidicus gigas. Biochim Biophys Acta. 1969;193(2):247–259. doi: 10.1016/0005-2736(69)90186-2. [DOI] [PubMed] [Google Scholar]
  4. Chacko G. K., Barnola F. V., Villegas R., Goldman D. E. The binding of tetrodotoxin to axonal membrane fraction isolated from garfish olfactory nerve. Biochim Biophys Acta. 1974 Dec 10;373(2):308–312. doi: 10.1016/0005-2736(74)90154-0. [DOI] [PubMed] [Google Scholar]
  5. Chacko G. K., Goldman D. E., Malhotra H. C., Dewey M. M. Isolation and characterization of plasma membrane fractions from garfish Lepisosteus osseus olfactory nerve. J Cell Biol. 1974 Sep;62(3):831–843. doi: 10.1083/jcb.62.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colquhoun D., Henderson R., Ritchie J. M. The binding of labelled tetrodotoxin to non-myelinated nerve fibres. J Physiol. 1972 Dec;227(1):95–126. doi: 10.1113/jphysiol.1972.sp010022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denburg J. L. An axon plasma membrane preparation from the walking legs of the lobster Homarus americanus. Biochim Biophys Acta. 1972 Sep 1;282(1):453–458. doi: 10.1016/0005-2736(72)90353-7. [DOI] [PubMed] [Google Scholar]
  8. Fischer S., Cellino M., Zambrano F., Zampighi G., Tellez Nagel M., Marcus D., Canessa-Fischer M. The molecular organization of nerve membranesI. Isolation and characterization of plasma membranes from the retinal axons of the squid: an axolemma-rich preparation. Arch Biochem Biophys. 1970 May;138(1):1–15. doi: 10.1016/0003-9861(70)90277-8. [DOI] [PubMed] [Google Scholar]
  9. Henderson R., Strichartz G. Ion fluxes through the sodium channels of garfish olfactory nerve membranes. J Physiol. 1974 Apr;238(2):329–342. doi: 10.1113/jphysiol.1974.sp010527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hille B. Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature. 1966 Jun 18;210(5042):1220–1222. doi: 10.1038/2101220a0. [DOI] [PubMed] [Google Scholar]
  11. Hille B. Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol. 1968 Feb;51(2):199–219. doi: 10.1085/jgp.51.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Marcus D., Canessa-Fischer M., Zampighi G., Fischer S. The molecular organization of nerve membranes. VI. The separation of axolemma from Schwann cell membranes of giant and retinal squid axons by density gradient centrifugation. J Membr Biol. 1972;9(3):209–228. [PubMed] [Google Scholar]
  14. NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Narahashi T., Albuquerque E. X., Deguchi T. Effects of batrachotoxin on membrane potential and conductance of squid giant axons. J Gen Physiol. 1971 Jul;58(1):54–70. doi: 10.1085/jgp.58.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ota M., Narahashi T., Keeler R. F. Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons. J Pharmacol Exp Ther. 1973 Jan;184(1):143–154. [PubMed] [Google Scholar]
  17. Ulbricht W. The effect of veratridine on excitable membranes of nerve and muscle. Ergeb Physiol. 1969;61:18–71. doi: 10.1007/BFb0111446. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES