Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1975 Apr 1;65(4):421–439. doi: 10.1085/jgp.65.4.421

Kinetic characteristics of the excitability-inducing material channel in oxidized cholesterol and brain lipid bilayer membranes

PMCID: PMC2214929  PMID: 1151321

Abstract

The kinetic characteristics of the opening and closing of the excitability-inducing material (EIM) channel in oxidized cholesterol and in brain lipid bilayers are compared. The kinetics of the opening and closing of individual ion-conducting channels in bilayers doped with small amounts of EIM are determined from discrete fluctuations in ionic current. The kinetics for approach to steady-state conductance are determined for lipid bilayers containing many channels. Steady- state and kinetic characteristics for the EIM channel incorporated in brain lipid bilayers can be accounted for by the model developed for the EIM channel incorporated in oxidized cholesterol membranes. Relaxation time, calculated from rate constants of single-channel membranes or directly measured in many-channel membranes is strongly temperature dependent, and is always shorter in brain lipid membranes. Changes in temperature do not affect the interaction of the electric field and the open channel, but the open configuration of the EIM channel in brain lipid bilayers is stablized with increasing temperature. The configurational energy difference between the open and closed channel, calculated from temperature studies, is larger in brain lipid bilayers. The energy barrier which separates the two configurations of the channel is larger in oxidized cholesterol bilayers.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bean R. C., Shepherd W. C., Chan H., Eichner J. Discrete conductance fluctuations in lipid bilayer protein membranes. J Gen Physiol. 1969 Jun;53(6):741–757. doi: 10.1085/jgp.53.6.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ehrenstein G., Blumenthal R., Latorre R., Lecar H. Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer. J Gen Physiol. 1974 Jun;63(6):707–721. doi: 10.1085/jgp.63.6.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ehrenstein G., Lecar H., Nossal R. The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J Gen Physiol. 1970 Jan;55(1):119–133. doi: 10.1085/jgp.55.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eisenberg M., Hall J. E., Mead C. A. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J Membr Biol. 1973 Dec 31;14(2):143–176. doi: 10.1007/BF01868075. [DOI] [PubMed] [Google Scholar]
  5. Gordon L. G., Haydon D. A. The unit conductance channel of alamethicin. Biochim Biophys Acta. 1972 Mar 17;255(3):1014–1018. doi: 10.1016/0005-2736(72)90415-4. [DOI] [PubMed] [Google Scholar]
  6. Krasne S., Eisenman G., Szabo G. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin. Science. 1971 Oct 22;174(4007):412–415. doi: 10.1126/science.174.4007.412. [DOI] [PubMed] [Google Scholar]
  7. Latorre R., Alvarez O., Verdugo P. Temperature characterization of the conductance of the excitability inducing material channel in oxidized cholesterol membranes. Biochim Biophys Acta. 1974 Nov 15;367(3):361–365. doi: 10.1016/0005-2736(74)90092-3. [DOI] [PubMed] [Google Scholar]
  8. Latorre R., Ehrenstein G., Lecar H. Ion transport through excitability-inducing material (EIM) channels in lipid bilayer membranes. J Gen Physiol. 1972 Jul;60(1):72–85. doi: 10.1085/jgp.60.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mueller P., Rudin D. O. Induced excitability in reconstituted cell membrane structure. J Theor Biol. 1963 May;4(3):268–280. doi: 10.1016/0022-5193(63)90006-7. [DOI] [PubMed] [Google Scholar]
  10. Muller R. U., Finkelstein A. Voltage-dependent conductance induced in thin lipid membranes by monazomycin. J Gen Physiol. 1972 Sep;60(3):263–284. doi: 10.1085/jgp.60.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES