Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1976 Mar 1;67(3):369–380. doi: 10.1085/jgp.67.3.369

Grayanotoxin, veratrine, and tetrodotoxin-sensitive sodium pathways in the Schwann cell membrane of squid nerve fibers

PMCID: PMC2214968  PMID: 1262854

Abstract

The actions of grayanotoxin I, veratrine, and tetrodotoxin on the membrane potential of the Schwann cell were studied in the giant nerve fiber of the squid Sepioteuthis sepioidea. Schwann cells of intact nerve fibers and Schwann cells attached to axons cut lengthwise over several millimeters were utilized. The axon membrane potential in the intact nerve fibers was also monitored. The effects of grayanotoxin I and veratrine on the membrane potential of the Schwann cell were found to be similar to those they produce on the resting membrane potential of the giant axon. Thus, grayanotoxin I (1-30 muM) and veratrine (5-50 mug-jl-1), externally applied to the intact nerve fiber or to axon-free nerve fiber sheaths, produce a Schwann cell depolarization which can be reversed by decreasing the external sodium concentration or by external application of tetrodotoxin. The magnitude of these membrane potential changes is related to the concentrations of the drugs in the external medium. These results indicate the existence of sodium pathways in the electrically unexcitable Schwann cell membrane of S. sepioidea, which can be opened up by grayanotoxin I and veratrine, and afterwards are blocked by tetrodotoxin. The sodium pathways of the Schwann cell membrane appear to be different from those of the axolemma which show a voltage-dependent conductance.

Full Text

The Full Text of this article is available as a PDF (648.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albuquerque E. X., Seyama I., Narahashi T. Characterization of batrachotoxin-induced depolarization of the squid giant axons. J Pharmacol Exp Ther. 1973 Feb;184(2):308–314. [PubMed] [Google Scholar]
  2. Albuquerque E. X., Warnick J. E., Sansone F. M. The pharmacology of batrachotoxin. II. Effect on electrical properties of the mammalian nerve and skeletal muscle membranes. J Pharmacol Exp Ther. 1971 Mar;176(3):511–528. [PubMed] [Google Scholar]
  3. Barnola F. V., Villegas R., Camejo G. Tetrodotoxin receptors in plasma membranes isolated from lobster nerve fibers. Biochim Biophys Acta. 1973 Feb 27;298(1):84–94. doi: 10.1016/0005-2736(73)90012-6. [DOI] [PubMed] [Google Scholar]
  4. Camejo G., Villegas G. M., Barnola F. V., Villegas R. Characterization of two different membrane fractions isolated from the first stellar nerves of the squid Dosidicus gigas. Biochim Biophys Acta. 1969;193(2):247–259. doi: 10.1016/0005-2736(69)90186-2. [DOI] [PubMed] [Google Scholar]
  5. Chacko G. K., Barnola F. V., Villegas R., Goldman D. E. The binding of tetrodotoxin to axonal membrane fraction isolated from garfish olfactory nerve. Biochim Biophys Acta. 1974 Dec 10;373(2):308–312. doi: 10.1016/0005-2736(74)90154-0. [DOI] [PubMed] [Google Scholar]
  6. Cuervo L. A., Adelman W. J., Jr Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon. J Gen Physiol. 1970 Mar;55(3):309–335. doi: 10.1085/jgp.55.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hille B. Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol. 1968 Feb;51(2):199–219. doi: 10.1085/jgp.51.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MOORE J. W. VOLTAGE CLAMP STUDIES ON INTERNALLY PERFUSED AXONS. J Gen Physiol. 1965 May;48:SUPPL–SUPPL:17. doi: 10.1085/jgp.48.5.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moore J. W., Narahashi T. Tetrodotoxin's highly selective blockage of an ionic channel. Fed Proc. 1967 Nov-Dec;26(6):1655–1663. [PubMed] [Google Scholar]
  10. NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakamura Y., Nakajima S., Grundfest H. The action of tetrodotoxin on electrogenic components of squid giant axons. J Gen Physiol. 1965 Jul;48(6):975–996. [PubMed] [Google Scholar]
  12. Narahashi T., Deguchi T., Albuquerque E. X. Effects of batrachotoxin on nerve membrane potential and conductances. Nat New Biol. 1971 Feb 17;229(7):221–222. doi: 10.1038/newbio229221b0. [DOI] [PubMed] [Google Scholar]
  13. Narahashi T., Seyama I. Mechanism of nerve membrane depolarization caused by grayanotoxin I. J Physiol. 1974 Oct;242(2):471–487. doi: 10.1113/jphysiol.1974.sp010718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ota M., Narahashi T., Keeler R. F. Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons. J Pharmacol Exp Ther. 1973 Jan;184(1):143–154. [PubMed] [Google Scholar]
  15. Seyama I., Narahashi T. Increase in sodium permeability of squid axon membranes by -dihydrograyanotoxin II. J Pharmacol Exp Ther. 1973 Feb;184(2):299–307. [PubMed] [Google Scholar]
  16. VILLEGAS R., VILLEGAS L., GIMENEZ M., VILLEGAS G. M. Schwann cell and axon electrical potential differences. Squid nerve structure and excitable membrane location. J Gen Physiol. 1963 May;46:1047–1064. doi: 10.1085/jgp.46.5.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Villegas J. Axon-Schwann cell interaction in the squid nerve fibre. J Physiol. 1972 Sep;225(2):275–296. doi: 10.1113/jphysiol.1972.sp009940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Villegas J. Characterization of acetylcholine receptors in the Schwann cell membrane of the squid nerve fibre. J Physiol. 1975 Aug;249(3):679–689. doi: 10.1113/jphysiol.1975.sp011037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Villegas J. Effects of acetylcholine and carbamylcholine on the axon and Schwann cell electrical potentials in the squid nerve fibre. J Physiol. 1974 Nov;242(3):647–659. doi: 10.1113/jphysiol.1974.sp010728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Villegas J. Effects of tubocurarine and eserine on the axon-Schwann cell relationship in the squid nerve fibre. J Physiol. 1973 Jul;232(1):193–208. doi: 10.1113/jphysiol.1973.sp010264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Villegas J. Transport of electrolytes in the Schwann cell and location of sodium by electron microscopy. J Gen Physiol. 1968 May;51(5 Suppl):61S+–61S+. [PubMed] [Google Scholar]
  22. Villegas J., Villegas L., Villegas R. Sodium, potassium, and chloride concentrations in the Schwann cell and axon of the squid nerve fiber. J Gen Physiol. 1965 Sep;49(1):1–7. doi: 10.1085/jgp.49.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Villegas J., Villegas R., Giménez M. Nature of the Schwann cell electrical potential. Effects of the external ionic concentrations and a cardiac glycoside. J Gen Physiol. 1968 Jan;51(1):47–64. doi: 10.1085/jgp.51.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES