Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 Feb 1;69(2):183–202. doi: 10.1085/jgp.69.2.183

Slow sodium inactivation in nerve after exposure to sulhydryl blocking reagents

PMCID: PMC2215015  PMID: 839196

Abstract

Exposure to N-ethylmaleimide (NEM), a reagent that binds covalently to protein sulfhydryl groups, results in a specific reduction in sodium conductance in crayfish axons. Resting potential, the delayed rise in potassium conductance, and the selectivity of the sodium channel are unaffected. Sodium currents are only slightly increased by hyperpolarizing prepulses of up to 50 ms duration, but can be restored to about 70% of their value before treatment if this duration is increased to 300-800 ms. The time to peak sodium current and the time constant of decay of sodium tail currents are unaffected by NEM, suggesting that the sodium activation system remains unaltered. Kinetic studies suggest that NEM reacts with a "slow" sodium inactivation system that is present in normal axons and that may be seen after depolarization produced by lowered the holding potential or increasing the external potassium concentration. NEM also perturbs the fast h inactivation system, and in a potential-dependent manner. At small depolarizations tauh is decreased, while at strong depolarizations it is increased over control values. Experiments with structural analogs of NEM suggest that sulfhydryl block is involved, but do not rule out an action similar to that of local anesthetics, p- Chloromercuriphenylsulfonic acid (PCMBS), another reagent with high specificity for SH groups, also blocks sodium currents, but restoration with prolonged hyperpolarizations is not possible.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman W. J., Jr, Palti Y. The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J Gen Physiol. 1969 Nov;54(5):589–606. doi: 10.1085/jgp.54.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adelman W. J., Jr, Palti Y. The influence of external potassium on the inactivation of sodium currents in the giant axon of the squid, Loligo pealei. J Gen Physiol. 1969 Jun;53(6):685–703. doi: 10.1085/jgp.53.6.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong C. M., Bezanilla F., Rojas E. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol. 1973 Oct;62(4):375–391. doi: 10.1085/jgp.62.4.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BAKER P. F., HODGKIN A. L., MEVES H. THE EFFECT OF DILUTING THE INTERNAL SOLUTION ON THE ELECTRICAL PROPERTIES OF A PERFUSED GIANT AXON. J Physiol. 1964 Apr;170:541–560. doi: 10.1113/jphysiol.1964.sp007348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COLE K. S., MOORE J. W. Potassium ion current in the squid giant axon: dynamic characteristic. Biophys J. 1960 Sep;1:1–14. doi: 10.1016/s0006-3495(60)86871-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chandler W. K., Hodgkin A. L., Meves H. The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J Physiol. 1965 Oct;180(4):821–836. doi: 10.1113/jphysiol.1965.sp007733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chandler W. K., Meves H. Voltage clamp experiments on internally perfused giant axons. J Physiol. 1965 Oct;180(4):788–820. doi: 10.1113/jphysiol.1965.sp007732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Courtney K. R. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J Pharmacol Exp Ther. 1975 Nov;195(2):225–236. [PubMed] [Google Scholar]
  9. FRIEDMANN E., MARRIAN D. H., SIMONREUSS I. Antimitotic action of maleimide and related substances. Br J Pharmacol Chemother. 1949 Mar;4(1):105–108. doi: 10.1111/j.1476-5381.1949.tb00521.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huneeus-Cox F., Fernandez H. L., Smith B. H. Effects of redox and sulfhydryl reagents on the bioelectric properties of the giant axon of the squid. Biophys J. 1966 Sep;6(5):675–689. doi: 10.1016/S0006-3495(66)86686-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keana J. F., Stämpfli R. Effect of several "specific" chemical reagents on the Na+, K+ and leakage currents in voltage-clamped single nodes of Ranvier. Biochim Biophys Acta. 1974 Nov 27;373(1):18–33. doi: 10.1016/0005-2736(74)90101-1. [DOI] [PubMed] [Google Scholar]
  14. Khodorov B. I., Shishkova L. D., Peganov E. M. Effect of procaine and calcium ions on slow sodium inactivation in the frog Ranvier node membrane. Bull Exp Biol Med. 1974 Sep;77(3):226–229. doi: 10.1007/BF00802462. [DOI] [PubMed] [Google Scholar]
  15. Marquis J. K., Mautner H. G. The effect of electrical stimulation on the action of sulfhydryl reagents in the giant axon of squid: suggested mechanisms for the role of thiol and disulfide groups in electrically-induced conformational changes. J Membr Biol. 1974;15(3):249–260. doi: 10.1007/BF01870090. [DOI] [PubMed] [Google Scholar]
  16. Narahashi T. Mechanism of action of tetrodotoxin and saxitoxin on excitable membranes. Fed Proc. 1972 May-Jun;31(3):1124–1132. [PubMed] [Google Scholar]
  17. SMITH H. M. Effects of sulfhydryl blockade on axonal function. J Cell Physiol. 1958 Apr;51(2):161–171. doi: 10.1002/jcp.1030510203. [DOI] [PubMed] [Google Scholar]
  18. Schauf C. L., Pencek T. L., Davis F. A. Slow sodium inactivation in Myxicola axons. Evidence for a second inactive state. Biophys J. 1976 Jul;16(7):771–778. doi: 10.1016/S0006-3495(76)85727-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shrager P. Ionic conductance changes in voltage clamped crayfish axons at low pH. J Gen Physiol. 1974 Dec;64(6):666–690. doi: 10.1085/jgp.64.6.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shrager P. Specific chemical groups involved in the control of ionic conductance in nerve. Ann N Y Acad Sci. 1975 Dec 30;264:293–303. doi: 10.1111/j.1749-6632.1975.tb31490.x. [DOI] [PubMed] [Google Scholar]
  21. Smyth D. G., Blumenfeld O. O., Konigsberg W. Reactions of N-ethylmaleimide with peptides and amino acids. Biochem J. 1964 Jun;91(3):589–595. doi: 10.1042/bj0910589. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES