Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 Mar 1;69(3):261–291. doi: 10.1085/jgp.69.3.261

Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process

PMCID: PMC2215017  PMID: 139462

Abstract

Two genes in Drosophila, rdgA and rdgB, which when defective cause retinal degeneration, were discovered by Hotta and Benzer (Hotta, Y., and S. Benzer. 1970. Proc. Natl, Acad. Sci. U. S, A. 67:1156-1163). These mutants have photoreceptor cells that are histologically normal upon eclosion but subsequently degenerate. The defects in the rdgA and rdgB mutants were localized by the study of genetic mosaics to the photoreceptor cells. In rdgB mutants retinal degeneration is light induced. It can be prevented by rearing the flies in the dark or by blocking the receptor potential with a no-receptor-potential mutation, norpA. Vitamin A deprivation and genetic elimination of the lysosomal enzyme acid phosphatase alsoprotect the photoreceptors of rdgB flies against light-induced damage. The photopigment kinetics of dark-reared rdgB flies appear normal in vitro by spectrophotometric measurements, and in vivo by measurements of the M potential. In normal Drosophila, a 1-s exposure to intense 470-nm light produces a prolonged depolarizing afterpotential (PDA) which can last for several hours. In dark-reared rdgB mutants the PDA lasts less than 2 min;; it appears to initiate the degeneration process, since the photoreceptors become permanently unresponsive after a single such exposure. Another mutant was isolated which prevents degeneration in rdgB flies but which has a normal receptor potential. This suppressor of degeneration is an allele of norpA. It is proposed that the normal norpA gene codes for a product which, when activated, leads to the receptor potential, and which is inactivated by the product of the normal rdgB gene.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Hodgkin A. L., Lamb T. D. Reconstruction of the electrical responses of turtle cones to flashes and steps of light. J Physiol. 1974 Nov;242(3):759–791. doi: 10.1113/jphysiol.1974.sp010733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell J., MacIntyre R. Characterization of acid phosphatase-1 null activity mutants of Drosophila melanogaster. Biochem Genet. 1973 Sep;10(1):39–55. doi: 10.1007/BF00485747. [DOI] [PubMed] [Google Scholar]
  3. Benzer S. BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1112–1119. doi: 10.1073/pnas.58.3.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bok D., Hall M. O. The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol. 1971 Jun;49(3):664–682. doi: 10.1083/jcb.49.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown J. E., Lisman J. E. An electrogenic sodium pump in Limulus ventral photoreceptor cells. J Gen Physiol. 1972 Jun;59(6):720–733. doi: 10.1085/jgp.59.6.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DOWLING J. E., SIDMAN R. L. Inherited retinal dystrophy in the rat. J Cell Biol. 1962 Jul;14:73–109. doi: 10.1083/jcb.14.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dowling J. E., Wald G. THE BIOLOGICAL FUNCTION OF VITAMIN A ACID. Proc Natl Acad Sci U S A. 1960 May;46(5):587–608. doi: 10.1073/pnas.46.5.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FUORTES M. G., HODGKIN A. L. CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS. J Physiol. 1964 Aug;172:239–263. doi: 10.1113/jphysiol.1964.sp007415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fahn S., Koval G. J., Albers R. W. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. V. Phosphorylation by adenosine triphosphate-32P. J Biol Chem. 1968 Apr 25;243(8):1993–2002. [PubMed] [Google Scholar]
  10. Franceschini N., Kirschfeld K. Etude optique in vivo des éléments photorécepteurs dans l'oeil composé de Drosophila. Kybernetik. 1971 Jan;8(1):1–13. doi: 10.1007/BF00270828. [DOI] [PubMed] [Google Scholar]
  11. GOODMAN G., RIPPS H., SIEGEL I. M. SEX-LINKED OCULAR DISORDERS: TRAIT EXPRESSIVITY IN MALES AND CARRIER FEMALES. Arch Ophthalmol. 1965 Mar;73:387–398. doi: 10.1001/archopht.1965.00970030389018. [DOI] [PubMed] [Google Scholar]
  12. Gouras P., Carr R. E., Gunkel R. D. Retinitis pigmentosa in abetalipoproteinemia: Effects of vitamin A. Invest Ophthalmol. 1971 Oct;10(10):784–793. [PubMed] [Google Scholar]
  13. HAGINS W. A., ZONANA H. V., ADAMS R. G. Local membrane current in the outer segments of squid photoreceptors. Nature. 1962 Jun 2;194:844–847. doi: 10.1038/194844a0. [DOI] [PubMed] [Google Scholar]
  14. HUBBARD R., ST GEORGE R. C. The rhodopsin system of the squid. J Gen Physiol. 1958 Jan 20;41(3):501–528. doi: 10.1085/jgp.41.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hamdorf K., Schwemer J., Gogala M. Insect visual pigment sensitive to ultraviolet light. Nature. 1971 Jun 18;231(5303):458–459. doi: 10.1038/231458a0. [DOI] [PubMed] [Google Scholar]
  16. Harris W. A., Stark W. S., Walker J. A. Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol. 1976 Apr;256(2):415–439. doi: 10.1113/jphysiol.1976.sp011331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herron W. L., Riegel B. W., Myers O. E., Rubin M. L. Retinal dystrophy in the rat--a pigment epithelial disease. Invest Ophthalmol. 1969 Dec;8(6):595–604. [PubMed] [Google Scholar]
  18. Hochstein S., Minke B., Hillman P. Antagonistic components of the late receptor potential in the barnacle photoreceptor arising from different stages of the pigment process. J Gen Physiol. 1973 Jul;62(1):105–128. doi: 10.1085/jgp.62.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hotta Y., Benzer S. Genetic dissection of the Drosophila nervous system by means of mosaics. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1156–1163. doi: 10.1073/pnas.67.3.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kankel D. R., Hall J. C. Fate mapping of nervous system and other internal tissues in genetic mosaics of Drosophila melanogaster. Dev Biol. 1976 Jan;48(1):1–24. doi: 10.1016/0012-1606(76)90041-5. [DOI] [PubMed] [Google Scholar]
  21. Kirschfeld K., Franceschini N. Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik. 1968 Aug;5(2):47–52. doi: 10.1007/BF00272694. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. LYON M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961 Apr 22;190:372–373. doi: 10.1038/190372a0. [DOI] [PubMed] [Google Scholar]
  24. LaVail M. M., Battelle B. A. Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp Eye Res. 1975 Aug;21(2):167–192. doi: 10.1016/0014-4835(75)90080-9. [DOI] [PubMed] [Google Scholar]
  25. LaVail M. M., Sidman R. L., O'Neil D. Photoreceptor-pigment epithelial cell relationships in rats with inherited retinal degeneration. Radioautographic and electron microscope evidence for a dual source of extra lamellar material. J Cell Biol. 1972 Apr;53(1):185–209. doi: 10.1083/jcb.53.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lasansky A., Fuortes M. G. The site of origin of electrical responses in visual cells of the leech, Hirudo medicinalis. J Cell Biol. 1969 Jul;42(1):241–252. doi: 10.1083/jcb.42.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Minke B., Hochstein S., Hillman P. Letter: Antagonistic process as source of visible-light suppression of afterpotential in Limulus UV photoreceptors. J Gen Physiol. 1973 Dec;62(6):787–791. doi: 10.1085/jgp.62.6.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Minke B., Wu C., Pak W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature. 1975 Nov 6;258(5530):84–87. doi: 10.1038/258084a0. [DOI] [PubMed] [Google Scholar]
  29. Mullen R. J., LaVail M. M. Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science. 1976 May 21;192(4241):799–801. doi: 10.1126/science.1265483. [DOI] [PubMed] [Google Scholar]
  30. Noell W. K., Albrecht R. Irreversible effects on visible light on the retina: role of vitamin A. Science. 1971 Apr 2;172(3978):76–79. doi: 10.1126/science.172.3978.76. [DOI] [PubMed] [Google Scholar]
  31. Noell W. K., Delmelle M. C., Albrecht R. Vitamin A deficiency effect on retina: dependence on light. Science. 1971 Apr 2;172(3978):72–75. doi: 10.1126/science.172.3978.72. [DOI] [PubMed] [Google Scholar]
  32. Nolte J., Brown J. E., Smith T. G., Jr A hyperpolarizing component of the receptor potential in the median ocellus of Limulus. Science. 1968 Nov 8;162(3854):677–679. doi: 10.1126/science.162.3854.677. [DOI] [PubMed] [Google Scholar]
  33. Ostroy S. E., Wilson M., Pak W. L. Drosophila rhodopsin: photochemistry, extraction and differences in the norp AP12 phototransduction mutant. Biochem Biophys Res Commun. 1974 Aug 5;59(3):960–966. doi: 10.1016/s0006-291x(74)80073-2. [DOI] [PubMed] [Google Scholar]
  34. Pak W. L., Grossfield J., Arnold K. S. Mutants of the visual pathway of Drosophila melanogaster. Nature. 1970 Aug 1;227(5257):518–520. doi: 10.1038/227518b0. [DOI] [PubMed] [Google Scholar]
  35. Pak W. L., Grossfield J., White N. V. Nonphototactic mutants in a study of vision of Drosophila. Nature. 1969 Apr 26;222(5191):351–354. doi: 10.1038/222351a0. [DOI] [PubMed] [Google Scholar]
  36. Pak W. L., Lidington K. J. Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. J Gen Physiol. 1974 Jun;63(6):740–756. doi: 10.1085/jgp.63.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ready D. F., Hanson T. E., Benzer S. Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol. 1976 Oct 15;53(2):217–240. doi: 10.1016/0012-1606(76)90225-6. [DOI] [PubMed] [Google Scholar]
  39. Sanyal S. Changes of lysosomal enzymes during hereditary degeneration and histogenesis of retina in mice. I. Acid phosphatase visualized by azo-dye and lead nitrate methods. Histochemie. 1970;23(3):207–219. doi: 10.1007/BF00306424. [DOI] [PubMed] [Google Scholar]
  40. Stern C. Somatic Crossing over and Segregation in Drosophila Melanogaster. Genetics. 1936 Nov;21(6):625–730. doi: 10.1093/genetics/21.6.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yates C. M., Dewar A. J., Wilson H., Winterburn A. K., Reading H. W. Histological and biochemical studies on the retina of a new strain of dystrophic rat. Exp Eye Res. 1974 Feb;18(2):119–133. doi: 10.1016/0014-4835(74)90098-0. [DOI] [PubMed] [Google Scholar]
  42. Zimmerman W. F., Goldsmith T. H. Photosensitivity of the circadian rhythm and of visual receptors in carotenoid-depleted Drosophila. Science. 1971 Mar 19;171(3976):1167–1169. doi: 10.1126/science.171.3976.1167. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES