Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 Jan 1;69(1):57–74. doi: 10.1085/jgp.69.1.57

The proximal negative response and visual adaptation in the skate retina

PMCID: PMC2215044  PMID: 833565

Abstract

The proximal negative response (PNR), a complex extracellular potential derived mainly from amacrine cell activity, was studied in the all-rod retina of the skate. Tetrodotoxin (10(-6) mg/ml) did not affect either the waveform or the latency of the response, indicating that the PNR reflects the graded, nonregenerative components of the amacrine cell potential. As regards its adaptive properties, the PNR exhibited both the extreme sensitivity to weak background light and the slow time course of light and dark adaptation that are characteristic of other responses from the proximal retina. Thus, the PNR, like the b-wave and ganglion cell discharge, appears to reflect adaptive processes located within the neural network of the inner retina.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burkhardt D. A. Distinction between a proximal negative response and the local b wave in the retina. Nature. 1969 Mar 1;221(5183):879–880. doi: 10.1038/221879a0. [DOI] [PubMed] [Google Scholar]
  2. Burkhardt D. A. Proximal negative response of frog retina. J Neurophysiol. 1970 May;33(3):405–420. doi: 10.1152/jn.1970.33.3.405. [DOI] [PubMed] [Google Scholar]
  3. Burkhardt D. A., Whittle P. Intensity coding in the frog retina. Quantitative relations between impulse and graded activity. J Gen Physiol. 1973 Mar;61(3):305–322. doi: 10.1085/jgp.61.3.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dowling J. E., Boycott B. B. Organization of the primate retina: electron microscopy. Proc R Soc Lond B Biol Sci. 1966 Nov 15;166(1002):80–111. doi: 10.1098/rspb.1966.0086. [DOI] [PubMed] [Google Scholar]
  5. Dowling J. E., Ripps H. Adaptation in skate photoreceptors. J Gen Physiol. 1972 Dec;60(6):698–719. doi: 10.1085/jgp.60.6.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dowling J. E., Ripps H. Potassium and retinal sensitivity. Brain Res. 1976 May 14;107(3):617–622. doi: 10.1016/0006-8993(76)90149-9. [DOI] [PubMed] [Google Scholar]
  7. Dowling J. E., Ripps H. S-potentials in the skate retina. Intracellular recordings during light and dark adaptation. J Gen Physiol. 1971 Aug;58(2):163–189. doi: 10.1085/jgp.58.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dowling J. E., Ripps H. Visual adaptation in the retina of the skate. J Gen Physiol. 1970 Oct;56(4):491–520. doi: 10.1085/jgp.56.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Green D. G., Dowling J. E., Siegel I. M., Ripps H. Retinal mechanisms of visual adaptation in the skate. J Gen Physiol. 1975 Apr;65(4):483–502. doi: 10.1085/jgp.65.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holden A. L. Proximal negative response in the pigeon retina. J Physiol. 1972 Feb;221(1):173–188. doi: 10.1113/jphysiol.1972.sp009747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaneko A. Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol. 1970 May;207(3):623–633. doi: 10.1113/jphysiol.1970.sp009084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kleinhaus A. L., Prichard J. W. Sodium dependent tetrodotoxin-resistant action potentials in a leech neuron. Brain Res. 1976 Feb 6;102(2):368–373. doi: 10.1016/0006-8993(76)90894-5. [DOI] [PubMed] [Google Scholar]
  13. Korol S., Leuenberger P. M., Englert U., Babel J. In vivo effects of glycine on retinal ultrastructure and averaged electroretinogram. Brain Res. 1975 Oct 31;97(2):235–251. doi: 10.1016/0006-8993(75)90447-3. [DOI] [PubMed] [Google Scholar]
  14. Lothman E. W., Somjen G. G. Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord. J Physiol. 1975 Oct;252(1):115–136. doi: 10.1113/jphysiol.1975.sp011137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miller R. F., Dacheux R. F. Synaptic organization and ionic basis of on and off channels in mudpuppy retina. III. A model of ganglion cell receptive field organization based on chloride-free experiments. J Gen Physiol. 1976 Jun;67(6):679–690. doi: 10.1085/jgp.67.6.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miller R. F., Dacheux R. Dendritic and somatic spikes in mudpuppy amacrine cells: indentification and TTX sensitivity. Brain Res. 1976 Mar 5;104(1):157–162. doi: 10.1016/0006-8993(76)90657-0. [DOI] [PubMed] [Google Scholar]
  17. Moody W. J., Futamachi K. J., Prince D. A. Extracellular potassium activity during epileptogenesis. Exp Neurol. 1974 Feb;42(2):248–263. doi: 10.1016/0014-4886(74)90023-5. [DOI] [PubMed] [Google Scholar]
  18. Murakami M., Shigematsu Y. Duality of conduction mechanism in bipolar cells of the frog retina. Vision Res. 1970 Jan;10(1):1–10. doi: 10.1016/0042-6989(70)90057-x. [DOI] [PubMed] [Google Scholar]
  19. NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
  21. Ogden T. E. The proximal negative response of the primate retina. Vision Res. 1973 Apr;13(4):797–807. doi: 10.1016/0042-6989(73)90044-8. [DOI] [PubMed] [Google Scholar]
  22. Proenza L. M., Burkhardt D. A. Proximal negative response and retinal sensitivity in the mudpuppy, Necturus maculosus. J Neurophysiol. 1973 May;36(3):502–518. doi: 10.1152/jn.1973.36.3.502. [DOI] [PubMed] [Google Scholar]
  23. Proenza L. M., Morton R. E. A device for beveling fine micropipettes. Physiol Behav. 1975 Apr;14(04):511–513. doi: 10.1016/0031-9384(75)90020-7. [DOI] [PubMed] [Google Scholar]
  24. Vyskocil F., Kritz N., Bures J. Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res. 1972 Apr 14;39(1):255–259. doi: 10.1016/0006-8993(72)90802-5. [DOI] [PubMed] [Google Scholar]
  25. Werblin F. S., Copenhagen D. R. Control of retinal sensitivity. 3. Lateral interactions at the inner plexiform layer. J Gen Physiol. 1974 Jan;63(1):88–110. doi: 10.1085/jgp.63.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Werblin F. S., Dowling J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol. 1969 May;32(3):339–355. doi: 10.1152/jn.1969.32.3.339. [DOI] [PubMed] [Google Scholar]
  27. YONEMURA D., MASUDA Y., HATTA M. The oscillatory potential in the electroretinogram. Jpn J Physiol. 1963 Apr 15;13:129–137. doi: 10.2170/jjphysiol.13.129. [DOI] [PubMed] [Google Scholar]
  28. Zipser B., Bennett M. V. Tetrodotoxin resistant electrically excitable responses of receptor cells. Brain Res. 1973 Nov 9;62(1):253–259. doi: 10.1016/0006-8993(73)90637-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES