Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 May 1;69(5):571–604. doi: 10.1085/jgp.69.5.571

Microelectrode studies of the active Na transport pathway of frog skin

RS Fisher
PMCID: PMC2215084  PMID: 301179

Abstract

When the outer surface of short-circuited frog skin was penetrated with microelectrodes, stable negative potentials that averaged near -100 mV were recorded consistently, confirming the results of Nagel (W. Nagel. 1975. Abstracts of the 5th International Biophysics Congress, Copenhagen. P-147.). The appearance of these stable potentials, V(O), concurrent with the observations that (a) a high resistance outer barrier R(O) accounting for approximately 75 percent or more of the transcellular resistance of control skins had been penetrated and that (b) 10(-5) M amiloride and reduced [Na] outside caused the values of V(O) to increase towards means value near -130 mV while the values of percent R(O) increased to more than 90 percent. It was of relationships were the same as the values of E(1) observed in studies of the current-voltage relationships were the same as the values of E’(1) defined as the values of voltage at the inner barrier when the V(O) of the outer barrier was reduced to zero by voltage clamping of the skins. Accordingly, these data are interpreted to mean that the values of E(1), approximately 130 mV, represent the E(Na) of the sodium pump at the inner barrier. 2,4-DNP was observed to decrease the values of transepithelial voltage less than E(1) the V(O) was negative. These data can be interpreted with a simple electrical equivalent circuit of the active sodium transport pathway of the frog skin that includes the idea that the outer membrane behaves as an electrical rectifier for ion transport.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRICKER N. S., BIBER T., USSING H. H. Exposure of the isolated from skin to high potassium concentrations at the internal surface. I. Bioelectric phenomena and sodium transport. J Clin Invest. 1963 Jan;42:88–99. doi: 10.1172/JCI104699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biber T. U., Chez R. A., Curran P. F. Na transport across frog skin at low external Na concentrations. J Gen Physiol. 1966 Jul;49(6):1161–1176. doi: 10.1085/jgp.0491161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biber T. U., Curran P. F. Direct measurement of uptake of sodium at the outer surface of the frog skin. J Gen Physiol. 1970 Jul;56(1):83–99. doi: 10.1085/jgp.56.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CEREIJIDO M., CURRAN P. F. INTRACELLULAR ELECTRICAL POTENTIALS IN FROG SKIN. J Gen Physiol. 1965 Mar;48:543–557. doi: 10.1085/jgp.48.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CHOWDHURY T. K., SNELL F. M. A MICROELECTRODE STUDY OF ELECTRICAL POTENTIALS IN FROG SKIN AND TOAD BLADDER. Biochim Biophys Acta. 1965 Mar 29;94:461–471. doi: 10.1016/0926-6585(65)90054-3. [DOI] [PubMed] [Google Scholar]
  6. Cereijido M., Rotunno C. A. Fluxes and distribution of sodium in frog skin. A new model. J Gen Physiol. 1968 May;51(5 Suppl):280S+–280S+. [PubMed] [Google Scholar]
  7. Chowdhury T. K., Snell F. M. Further observations on the intracellular potential in frog skin and toad bladder. Bibl Laeger. 1966 Mar 14;112(3):581–583. doi: 10.1016/0926-6585(66)90262-7. [DOI] [PubMed] [Google Scholar]
  8. Cuthbert A. W., Shum W. K. Amiloride and the sodium channel. Naunyn Schmiedebergs Arch Pharmacol. 1974;281(3):261–269. doi: 10.1007/BF00500595. [DOI] [PubMed] [Google Scholar]
  9. Dörge A., Gehring K., Nagel W., Thurau K. Localization of sodium in frog skin by electron microprobe analysis. Naunyn Schmiedebergs Arch Pharmacol. 1974;281(3):271–280. doi: 10.1007/BF00500596. [DOI] [PubMed] [Google Scholar]
  10. FRAZIER H. S., LEAF A. The electrical characteristics of active sodium transport in the toad bladder. J Gen Physiol. 1963 Jan;46:491–503. doi: 10.1085/jgp.46.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finn A. L. Changing concepts of transepithelial sodium transport. Physiol Rev. 1976 Apr;56(2):453–464. doi: 10.1152/physrev.1976.56.2.453. [DOI] [PubMed] [Google Scholar]
  12. Finn A. L. Transepithelial potential difference in toad urinary bladder is not due to ionic diffusion. Nature. 1974 Aug 9;250(5466):495–496. doi: 10.1038/250495a0. [DOI] [PubMed] [Google Scholar]
  13. Helman S. I., Fisher R. S. Stratum corneum of frog skin: inferences for studies of Na entry and transport pool. Am J Physiol. 1977 Jan;232(1):C37–C44. doi: 10.1152/ajpcell.1977.232.1.C37. [DOI] [PubMed] [Google Scholar]
  14. Helman S. I., Miller D. A. Edge damage effect on electrical measurements of frog skin. Am J Physiol. 1973 Oct;225(4):972–977. doi: 10.1152/ajplegacy.1973.225.4.972. [DOI] [PubMed] [Google Scholar]
  15. Helman S. I., Miller D. A. Edge damage effect on measurements of urea and sodium flux in frog skin. Am J Physiol. 1974 May;226(5):1198–1203. doi: 10.1152/ajplegacy.1974.226.5.1198. [DOI] [PubMed] [Google Scholar]
  16. Helman S. I., Miller D. A. In vitro techniques for avoiding edge damage in studies of frog skin. Science. 1971 Jul 9;173(3992):146–148. doi: 10.1126/science.173.3992.146. [DOI] [PubMed] [Google Scholar]
  17. Helman S. I., O'Neil R. G., Fisher R. S. Determination of the ENa of from skin from studies of its current-voltage relationship. Am J Physiol. 1975 Oct;229(4):947–951. doi: 10.1152/ajplegacy.1975.229.4.947. [DOI] [PubMed] [Google Scholar]
  18. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  19. Lindemann B. Letter: Impalement artifacts in microelectrode recordings of epithelial membrane potentials. Biophys J. 1975 Nov;15(11):1161–1164. doi: 10.1016/S0006-3495(75)85892-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MACROBBIE E. A., USSING H. H. Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand. 1961 Nov-Dec;53:348–365. doi: 10.1111/j.1748-1716.1961.tb02293.x. [DOI] [PubMed] [Google Scholar]
  21. Nunes M. A., Vieira F. L. Negative potential level in the outer layer of the toad skin. J Membr Biol. 1975 Nov 7;24(2):161–181. doi: 10.1007/BF01868621. [DOI] [PubMed] [Google Scholar]
  22. O'Neil R., Helman S. I. Influence of vasopressin and amiloride on shunt pathways of frog skin. Am J Physiol. 1976 Jul;231(1):164–173. doi: 10.1152/ajplegacy.1976.231.1.164. [DOI] [PubMed] [Google Scholar]
  23. Rawlins F., Mateu L., Fragachan F., Whittembury G. Isolated toad skin epithelium: transport characteristics. Pflugers Arch. 1970;316(1):64–80. doi: 10.1007/BF00587897. [DOI] [PubMed] [Google Scholar]
  24. Schultz S. G. Electrical potential differences and electromotive forces in epithelial tissues. J Gen Physiol. 1972 Jun;59(6):794–798. doi: 10.1085/jgp.59.6.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. USSING H. H., WINDHAGER E. E. NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. Acta Physiol Scand. 1964 Aug;61:484–504. [PubMed] [Google Scholar]
  26. Voûte C. L., Ussing H. H. Some morphological aspects of active sodium transport. The epithelium of the frog skin. J Cell Biol. 1968 Mar;36(3):625–638. doi: 10.1083/jcb.36.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. WHITTEMBURY G. ELECTRICAL POTENTIAL PROFILE OF THE TOAD SKIN EPITHELIUM. J Gen Physiol. 1964 Mar;47:795–808. doi: 10.1085/jgp.47.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zerahn K. Nature and localization of the sodium pool during active transport in the isolated frog skin. Acta Physiol Scand. 1969 Nov;77(3):272–281. doi: 10.1111/j.1748-1716.1969.tb04572.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES