Abstract
The ionophore X537A causes a large increase in the [(14)C]dopamine (a catecholamine) permeability of planar bilayer membranes. Dopamine transport increases linearly with the ionophore concentration. At relatively high concentrations in the presence of dopamine, the ionophore omdices a conductance which is nearly ideally selective for the dopamine cation. However, the total dopamine flux as determined in tracer experiments is not affected by an electric field and is over 10(5) times larger than predicted from the estimated dopamine conductance. Increasing the dopamine concentration on the side containing radioactive dopamine (the cis side) saturates the dopamine transport. This saturation is relieved by trans addition of nonradioactive dopamine, tyramine, H(+), or K(+). With unequal concentrations of dopamine cis and trans (49 and 12.5 mM), the unidirectional dopamine fluxes are equal. Increasing H(+) cis and trans decreases dopamine transport. It is concluded that at physiological pH, the X537A-induced transport of dopamine occurs via an electrically silent exchange diffusion of dopamine cation with another cation (e.g., dopamine(+), H(+), or K(+)). X537A induces a Ca(++)-independent release of catecholamines from sympathetic nerves by interfering with intracellular storage within storage vesicles (R.W. Holz. 1975. Biochim. Biophys. Acta. 375:138-152). It is suggested that X537A causes an exchange of intravesicular catecholamine with a cytoplasmic cation (perhaps K(+) or H(+)) across the storage vesicle membrane.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bashford C. L., Radda G. K., Ritchie G. A. Energy-linked activities of the chromaffin granule membrane. FEBS Lett. 1975 Jan 15;50(1):21–24. doi: 10.1016/0014-5793(75)81031-3. [DOI] [PubMed] [Google Scholar]
- Caswell A. H., Pressman B. C. Kinetics of transport of divalent cations across sarcoplasmic reticulum vesicles induced by ionophores. Biochem Biophys Res Commun. 1972 Oct 6;49(1):292–298. doi: 10.1016/0006-291x(72)90043-5. [DOI] [PubMed] [Google Scholar]
- Cochrane D. E., Douglas W. W. Calcium-induced extrusion of secretory granules (exocytosis) in mast cells exposed to 48-80 or the ionophores A-23187 and X-537A. Proc Natl Acad Sci U S A. 1974 Feb;71(2):408–412. doi: 10.1073/pnas.71.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Célis H., Estrada S., Montal M. Model translocators for divalent and monovalent ion transport in phospholipid membranes. I. The ion permeability induced in lipid bilayers by the antibiotic X-537A. J Membr Biol. 1974;18(2):187–199. doi: 10.1007/BF01870111. [DOI] [PubMed] [Google Scholar]
- Degani H., Friedman H. L. Ion binding by X-537A. Formulas, formation constants, and spectra of complexes. Biochemistry. 1974 Nov 19;13(24):5022–5032. doi: 10.1021/bi00721a025. [DOI] [PubMed] [Google Scholar]
- Estrada S., Célis H., Calderón E., Gallo G., Montal M. Model translocators for divalent and monovalent ion transport in phospholipid membranes. II. The effects of ion translocator X-537A on the energy-conserving properties of mitochondrial membranes. J Membr Biol. 1974;18(3-4):201–218. doi: 10.1007/BF01870112. [DOI] [PubMed] [Google Scholar]
- Garrahan P. J., Glynn I. M. The behaviour of the sodium pump in red cells in the absence of external potassium. J Physiol. 1967 Sep;192(1):159–174. doi: 10.1113/jphysiol.1967.sp008294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hladky S. B. The effect of stirring on the flux of carriers into black lipid membranes. Biochim Biophys Acta. 1973 May 11;307(2):261–269. doi: 10.1016/0005-2736(73)90093-x. [DOI] [PubMed] [Google Scholar]
- Holz R. W. The release of dopamine from synaptosomes from rat striatum by the ionophores X 537A and A 23187. Biochim Biophys Acta. 1975 Jan 14;375(1):138–152. doi: 10.1016/0005-2736(75)90079-6. [DOI] [PubMed] [Google Scholar]
- Holz R., Finkelstein A. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol. 1970 Jul;56(1):125–145. doi: 10.1085/jgp.56.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter M. J. A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell. J Physiol. 1971 Oct;218 (Suppl):49P–50P. [PubMed] [Google Scholar]
- Johnson R. G., Scarpa A. Catecholamine equilibration gradients of isolated chromaffin vesicles induced by the ionophore X-537 A. FEBS Lett. 1974 Oct 1;47(1):117–121. doi: 10.1016/0014-5793(74)80438-2. [DOI] [PubMed] [Google Scholar]
- Johnson R. G., Scarpa A. Internal pH of isolated chromaffin vesicles. J Biol Chem. 1976 Apr 10;251(7):2189–2191. [PubMed] [Google Scholar]
- Johnson S. M., Herrin J., Liu S. J., Paul I. C. The crystal and molecular structure of the barium salt of an antibiotic containing a high proportion of oxygen. J Am Chem Soc. 1970 Jul 15;92(14):4428–4435. doi: 10.1021/ja00717a047. [DOI] [PubMed] [Google Scholar]
- Kafka M. S., Holz R. W. Ionophores X537A and A23187. Effects on the permeability of lipid bimolecular membranes to dopamine and calcium. Biochim Biophys Acta. 1976 Feb 19;426(1):31–37. doi: 10.1016/0005-2736(76)90426-0. [DOI] [PubMed] [Google Scholar]
- McLaughlin S. G., Szabo G., Eisenman G., Ciani S. M. Surface charge and the conductance of phospholipid membranes. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1268–1275. doi: 10.1073/pnas.67.3.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips J. H. Steady-state kinetics of catecholamine transport by chromaffin-granule "ghosts". Biochem J. 1974 Nov;144(2):319–325. doi: 10.1042/bj1440319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pressman B. C. Properties of ionophores with broad range cation selectivity. Fed Proc. 1973 Jun;32(6):1698–1703. [PubMed] [Google Scholar]
- Rothstein A., Cabantchik Z. I., Knauf P. Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc. 1976 Jan;35(1):3–10. [PubMed] [Google Scholar]
- Schadt M., Haeusler G. Permeability of lipid bilayer membranes to biogenic amines and cations: changes induced by ionophores and correlations with biological activities. J Membr Biol. 1974;18(3-4):277–294. doi: 10.1007/BF01870117. [DOI] [PubMed] [Google Scholar]
- Schaffer S. W., Safer B., Scarpa A., Williamson J. R. Mode of action of the calcium ionophores X-537A and A23187 on cardiac contractility. Biochem Pharmacol. 1974 May 1;23(11):1609–1617. doi: 10.1016/0006-2952(74)90373-6. [DOI] [PubMed] [Google Scholar]
- Taugner G. The membrane of catecholamine storage vesicles of adrenal medulla. Uptake and release of noradrenaline in relation to the pH and the concentration and steric configuration of the amine present in the medium. Naunyn Schmiedebergs Arch Pharmacol. 1972;274(3):299–314. doi: 10.1007/BF00501939. [DOI] [PubMed] [Google Scholar]
- Thoa N. B., Costa J. L., Moss J., Kopin I. J. Mechanism of release of norepinephrine from peripheral adrenergic neurones by the calcium ionophores X 537A and A 23187. Life Sci. 1974 May 1;14(9):1705–1719. doi: 10.1016/0024-3205(74)90272-0. [DOI] [PubMed] [Google Scholar]
