Abstract
This paper describes work which begins to define the molecular organization in the region of the membrane that comprises the functional domain of the Na:K pump. The membrane-bound phosphoglycerate kinase (PGK) and Na, K-ATPase appear to be directly linked via a compartmentalized form of ATP. Evidence for the membrane pool of ATP is based on the labeling characteristics of the phosphoproteins by [γ-(32)P]ATP of ghosts incubated under various conditions. Preincubation of ghosts in the presence of ATP at 37 degrees C, but not at 0 degrees C, completely obscures the formation of the Na-phosphoprotein in ghosts washed and subsequently incubated in the presence of [gamma-(32)P]ATP. In contrast to the Na component, the Mg component of phosphorylation is only slightly altered by preincubation with ATP. ATPase activity measured as (32)P(i) liberated during the subsequent incubation at 0 degrees C, reflects completely the differential effects of preincubation with ATP on (32)P incorporation into phosphoprotein. ATP placed within the pool by preincubation can be removed by operating the Na, K-ATPase or the PGK reaction in the reverse direction by use of exogenous substrates. Alternatively, the membrane pool of ATP can be formed also from exogenous substrates by running the PGK reaction in the forward direction. These results, while providing direct support for a membrane compartment of ATP, also indicate the location of this compartment in relation to the PGK and the Na, K-ATPase. In addition, these results also imply that the Mg and Na components are different enzymatic entities since substrate ATP can be derived from separate sources.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blostein R. Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis. J Biol Chem. 1968 Apr 25;243(8):1957–1965. [PubMed] [Google Scholar]
- Blostein R. Sodium-activated adenosine triphosphatase activity of the erythrocyte membrane. J Biol Chem. 1970 Jan 25;245(2):270–275. [PubMed] [Google Scholar]
- CRANE R. K., LIPMANN F. The relationship of mitochondrial phosphate to aerobic phosphate bond generation. J Biol Chem. 1953 Mar;201(1):245–246. [PubMed] [Google Scholar]
- Chillar R. K., Beutler E. Explanation for the apparent lack of ouabain inhibition of pyruvate production in hemolysates: the "backward" PGK reaction. Blood. 1976 Mar;47(3):507–512. [PubMed] [Google Scholar]
- Czerwinski A., Gitelman H. J., Welt L. G. A new member of the ATPase family. Am J Physiol. 1967 Sep;213(3):786–792. doi: 10.1152/ajplegacy.1967.213.3.786. [DOI] [PubMed] [Google Scholar]
- Dunham P. B., Hoffman J. F. Partial purification of the ouabain-binding component and of Na,K-ATPase from human red cell membranes. Proc Natl Acad Sci U S A. 1970 Jul;66(3):936–943. doi: 10.1073/pnas.66.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckel R. E., Rizzo S. C., Lodish H., Berggren A. B. Potassium transport and control of glycolysis in human erythrocytes. Am J Physiol. 1966 Apr;210(4):737–743. doi: 10.1152/ajplegacy.1966.210.4.737. [DOI] [PubMed] [Google Scholar]
- Feig S. A., Segel G. B., Shohet S. B., Nathan D. G. Energy metabolism in human erythrocytes. II. Effects of glucose depletion. J Clin Invest. 1972 Jun;51(6):1547–1554. doi: 10.1172/JCI106951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEINZ E., HOFFMAN J. F. PHOSPHATE INCORPORATION AND NA, K-ATPASE ACTIVITY IN HUMAN RED BLOOD CELL GHOSTS. J Cell Physiol. 1965 Feb;65:31–43. doi: 10.1002/jcp.1030650106. [DOI] [PubMed] [Google Scholar]
- HOFFMAN J. F. Cation transport and structure of the red-cell plasma membrane. Circulation. 1962 Nov;26:1202–1213. doi: 10.1161/01.cir.26.5.1201. [DOI] [PubMed] [Google Scholar]
- Hegyvary C., Post R. L. Binding of adenosine triphosphate to sodium and potassium ion-stimulated adenosine triphosphatase. J Biol Chem. 1971 Sep 10;246(17):5234–5240. [PubMed] [Google Scholar]
- Hoffman J. F., Proverbio F. Membrane ATP and the functional organization of the red cell Na:K pump. Ann N Y Acad Sci. 1974;242(0):459–460. doi: 10.1111/j.1749-6632.1974.tb19109.x. [DOI] [PubMed] [Google Scholar]
- Katsumata Y., Asai J. Ultrastructural changes of erythrocyte ghosts having no connection with hydrolysis of ATP. Arch Biochem Biophys. 1972 May;150(1):330–332. doi: 10.1016/0003-9861(72)90043-4. [DOI] [PubMed] [Google Scholar]
- Knauf P. A., Proverbio F., Hoffman J. F. Chemical characterization and pronase susceptibility of the Na:K pump-associated phosphoprotein of human red blood cells. J Gen Physiol. 1974 Mar;63(3):305–323. doi: 10.1085/jgp.63.3.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraus A. P., Langston M. F., Jr, Lynch B. L. Red cell phosphoglycerate kinase deficiency. A new cause of non-spherocytic hemolytic anemia. Biochem Biophys Res Commun. 1968 Jan 25;30(2):173–177. doi: 10.1016/0006-291x(68)90466-x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mårdh S., Zetterqvist O. Phosphorylation of bovine brain Na + , K + -stimulated ATP phosphohydrolase by adenosine ( 32 P)triphosphate studied by a rapid-mixing technique. Biochim Biophys Acta. 1972 Jan 17;255(1):231–238. doi: 10.1016/0005-2736(72)90025-9. [DOI] [PubMed] [Google Scholar]
- Neufeld A. H., Levy H. M. A second ouabain-sensitive sodium-dependent adenosine triphosphate in brain microsomes. J Biol Chem. 1969 Dec 10;244(23):6493–6497. [PubMed] [Google Scholar]
- Nilsson O., Ronist G. Enzyme activities and ultrastructure of a membrane fraction from human erythrocytes. Biochim Biophys Acta. 1969 Jun 3;183(1):1–9. doi: 10.1016/0005-2736(69)90123-0. [DOI] [PubMed] [Google Scholar]
- Okonkwo P. O., Longenecker G., Askari A. Studies on the mechanism of inhibition of the red cell metabolism by cardiac glycosides. J Pharmacol Exp Ther. 1975 Jul;194(1):244–254. [PubMed] [Google Scholar]
- Parker J. C., Hoffman J. F. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells. J Gen Physiol. 1967 Mar;50(4):893–916. doi: 10.1085/jgp.50.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pataki G. Thin-layer chromatography of nucleic acid bases, nucleosides, nucleotides and related compounds. 3. Separation of complex mixtures on cellulose layers. J Chromatogr. 1967 Jul;29(1):126–132. doi: 10.1016/s0021-9673(00)92637-2. [DOI] [PubMed] [Google Scholar]
- Penniston J. T., Green D. E. The conformational basis of energy transformations in membrane systems. IV. Energized states and pinocytosis in erythrocyte ghosts. Arch Biochem Biophys. 1968 Nov;128(2):339–350. doi: 10.1016/0003-9861(68)90040-4. [DOI] [PubMed] [Google Scholar]
- Robinson J. D. Kinetic studies on a brain microsomal adenosine triphosphatase. Evidence suggesting conformational changes. Biochemistry. 1967 Oct;6(10):3250–3258. doi: 10.1021/bi00862a034. [DOI] [PubMed] [Google Scholar]
- Ronquist G., Agren G. Formation of adenosine triphosphate by human erythrocyte ghosts. Nature. 1966 Mar 12;209(5028):1090–1091. doi: 10.1038/2091090a0. [DOI] [PubMed] [Google Scholar]
- SCHRIER S. L. Studies of the metabolism of human erythrocyte membranes. J Clin Invest. 1963 Jun;42:756–766. doi: 10.1172/JCI104768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SEN A. K., POST R. L. STOICHIOMETRY AND LOCALIZATION OF ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT IN THE ERYTHROCYTE. J Biol Chem. 1964 Jan;239:345–352. [PubMed] [Google Scholar]
- Sachs J. R. Recoupling the Na-K pump. J Clin Invest. 1972 Dec;51(12):3244–3247. doi: 10.1172/JCI107151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrier S. L. ATP synthesis in human erythrocyte membranes. Biochim Biophys Acta. 1967 Sep 9;135(4):591–598. doi: 10.1016/0005-2736(67)90091-0. [DOI] [PubMed] [Google Scholar]
- Schrier S. L. Organization of enzymes in human erythrocyte membranes. Am J Physiol. 1966 Jan;210(1):139–145. doi: 10.1152/ajplegacy.1966.210.1.139. [DOI] [PubMed] [Google Scholar]
- Segel G. B., Feig S. A., Glader B. E., Muller A., Dutcher P., Nathan D. G. Energy metabolism in human erythrocytes: the role of phosphoglycerate kinase in cation transport. Blood. 1975 Aug;46(2):271–278. [PubMed] [Google Scholar]
- Steck T. L., Weinstein R. S., Straus J. H., Wallach D. F. Inside-out red cell membrane vesicles: preparation and purification. Science. 1970 Apr 10;168(3928):255–257. doi: 10.1126/science.168.3928.255. [DOI] [PubMed] [Google Scholar]
- Tillman W., Cordua A., Schröter W. Organization of enzymes of glycolysis and of glutathione metabolism in human red cell membranes. Biochim Biophys Acta. 1975 Mar 13;382(2):157–171. doi: 10.1016/0005-2736(75)90174-1. [DOI] [PubMed] [Google Scholar]
- Whittam R., Ager M. E. The connexion between active cation transport and metabolism in erythrocytes. Biochem J. 1965 Oct;97(1):214–227. doi: 10.1042/bj0970214. [DOI] [PMC free article] [PubMed] [Google Scholar]