Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1978 Jan 1;71(1):69–92. doi: 10.1085/jgp.71.1.69

Ionic mechanism for the generation of horizontal cell potentials in isolated axolotl retina

PMCID: PMC2215099  PMID: 202664

Abstract

The ionic mechanism of horizontal cell potentials was investigated in the isolated retina of the axolotl Ambystoma mexicanum. The membrane potentials of both receptors and horizontal cells were recorded intracellularly while the ionic composition of the medium flowing over the receptor side of the retina was changed. The membrane potential of the horizontal cell is highly depender side of the retina was changed. The membrane potential of the horizontal cell is highly dependent on the extracellular concentration of sodium. When the external ion concentration of either chloride or potassium was changed independently of the other, there were shifts in the membrane potential of the horizontal cell which could not be explained by changes in the equilibrium potential of these ions. If the external concentrations of both potassium and chloride ions were varied so that the product of their external concentrations did not change, the shift in the membrane potential of the horizontal cell was in the direction predicted by the Nernst equation. The results are consistent with the suggestion that in the dark the receptors release a synaptic transmitter which increases primarily the sodium conductance of the horizontal cell postsynaptic membrane.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Fuortes M. G., O'Bryan P. M. Receptive fields of cones in the retina of the turtle. J Physiol. 1971 Apr;214(2):265–294. doi: 10.1113/jphysiol.1971.sp009432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bortoff A. Localization of slow potential responses in the Necturus retina. Vision Res. 1964 Dec;4(11):627–635. doi: 10.1016/0042-6989(64)90048-3. [DOI] [PubMed] [Google Scholar]
  3. Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown J. E., Pinto L. H. Ionic mechanism for the photoreceptor potential of the retina of Bufo marinus. J Physiol. 1974 Feb;236(3):575–591. doi: 10.1113/jphysiol.1974.sp010453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byzov A. L., Trifonov J. A. The response to electric stimulation of horizontal cells in the carp retina. Vision Res. 1968 Jul;8(7):817–822. doi: 10.1016/0042-6989(68)90132-6. [DOI] [PubMed] [Google Scholar]
  6. Cervetto L., MacNichol E. F., Jr Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science. 1972 Nov 17;178(4062):767–768. doi: 10.1126/science.178.4062.767. [DOI] [PubMed] [Google Scholar]
  7. Cervetto L., Piccolino M. Synaptic transmission between photoreceptors and horizontal cells in the turtle retina. Science. 1974 Feb 1;183(4123):417–419. doi: 10.1126/science.183.4123.417. [DOI] [PubMed] [Google Scholar]
  8. DE ROBERTIS E., FRANCHI C. M. Electron microscope observations on synaptic vesicles in synapses of the retinal rods and cones. J Biophys Biochem Cytol. 1956 May 25;2(3):307–318. doi: 10.1083/jcb.2.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DEL CASTILLO J., KATZ B. Biophysical aspects of neuro-muscular transmission. Prog Biophys Biophys Chem. 1956;6:121–170. [PubMed] [Google Scholar]
  10. Dowling J. E., Ripps H. Effect of magnesium on horizontal cell activity in the skate retina. Nature. 1973 Mar 9;242(5393):101–103. doi: 10.1038/242101a0. [DOI] [PubMed] [Google Scholar]
  11. GOURAS P. Graded potentials of bream retina. J Physiol. 1960 Jul;152:487–505. doi: 10.1113/jphysiol.1960.sp006504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gray E. G., Pease H. L. On understanding the organisation of the retinal receptor synapses. Brain Res. 1971 Dec 10;35(1):1–15. doi: 10.1016/0006-8993(71)90591-9. [DOI] [PubMed] [Google Scholar]
  13. Kaneko A., Shimazaki H. Effects of external ions on the synaptic transmission from photorecptors to horizontal cells in the carp retina. J Physiol. 1975 Nov;252(2):509–522. doi: 10.1113/jphysiol.1975.sp011155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MACNICHOL E. J., SVAETICHIN G. Electric responses from the isolated retinas of fishes. Am J Ophthalmol. 1958 Sep;46(3 Pt 2):26–46. doi: 10.1016/0002-9394(58)90053-9. [DOI] [PubMed] [Google Scholar]
  16. Maksimova E. M., Maksimov V. V. Ob izmenenii vkhodnogo soprotivleniia postoiannomu toku gorizontal'nykh kletok setchatki ryb pri vozbuzhdenii. Neirofiziologiia. 1971 Mar-Apr;3(2):210–216. [PubMed] [Google Scholar]
  17. Miller R. F., Aacheux R. F. Information processing in the retina: importance of chloride ions. Science. 1973 Jul 20;181(4096):266–268. doi: 10.1126/science.181.4096.266. [DOI] [PubMed] [Google Scholar]
  18. Miller R. F., Dacheux R. F. Synaptic organization and ionic basis of on and off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells. J Gen Physiol. 1976 Jun;67(6):639–659. doi: 10.1085/jgp.67.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nelson R. A comparison of electrical properties of neurons in Necturus retina. J Neurophysiol. 1973 May;36(3):519–535. doi: 10.1152/jn.1973.36.3.519. [DOI] [PubMed] [Google Scholar]
  20. Pinto L. H., Pak W. L. Light-induced changes in photoreceptor membrane resistance and potential in Gecko retinas. I. Preparations treated to reduce lateral interactions. J Gen Physiol. 1974 Jul;64(1):26–48. doi: 10.1085/jgp.64.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith T. G., Wuerker R. B., Frank K. Membrane impedance changes during synaptic transmission in cat spinal motoneurons. J Neurophysiol. 1967 Sep;30(5):1072–1096. doi: 10.1152/jn.1967.30.5.1072. [DOI] [PubMed] [Google Scholar]
  22. Tomita T. Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harb Symp Quant Biol. 1965;30:559–566. doi: 10.1101/sqb.1965.030.01.054. [DOI] [PubMed] [Google Scholar]
  23. Toyoda J., Nosaki H., Tomita T. Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 1969 Apr;9(4):453–463. doi: 10.1016/0042-6989(69)90134-5. [DOI] [PubMed] [Google Scholar]
  24. Trifonov I. U. Izuchenie sinapticheskoi peredachi mezhdu fotoretseptorom i gorizontal'noi kletkoi pri pomoshchi élektricheskikh razdrazhenii setchatki. Biofizika. 1968 Sep-Oct;13(5):809–817. [PubMed] [Google Scholar]
  25. Trifonov Iu A., Chailakhian L. M., Byzov A. L. Issledovanie prirody élektricheskikh otvetov gorizontal'nykh kletok setchatki ryb. Neirofiziologiia. 1971 Jan-Feb;3(1):89–98. [PubMed] [Google Scholar]
  26. WATANABE K., TOSAKA T., YOKOTA T. Effects of extrinsic electric current on the cyprinid fish EIRG (S-potential). Jpn J Physiol. 1960 Apr 29;10:132–141. doi: 10.2170/jjphysiol.10.132. [DOI] [PubMed] [Google Scholar]
  27. Werblin F. S. Anomalous rectification in horizontal cells. J Physiol. 1975 Jan;244(3):639–657. doi: 10.1113/jphysiol.1975.sp010817. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES