Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1978 May 1;71(5):533–557. doi: 10.1085/jgp.71.5.533

Diffusion and consumption of oxygen in the resting frog sartorius muscle

PMCID: PMC2215104  PMID: 307046

Abstract

Adaptations of the method of Takahashi et al. (1966. J. Gen. Physiol. 50:317-333) were used to test the validity of the one-dimensional diffusion equation for O2 in the resting excised frog sartorius muscle. This equation is: (formula: see text) where x is the distance perpendicular to the muscle surface. t is time, P(x, t) is the partial pressure of O2,D and alpha are the diffusion coefficient and solubility for O2 in the tissue, and Q is the rate of O2 consumption. P(O, t), the time-course of PO2 at one muscle surface, was measured by a micro- oxygen electrode. Transients in the PO2 profile of the muscle were induced by two methods: (a) after an equilibration period, one surface was sealed off by a disc in which the O2 electrode was embedded; (b) when PO2 at this surface reached a steady state, a step change was made in the PO2 at the other surface. With either method, the agreement between the measured P(O, t) and that predicted by the diffusion equation was excellent, making possible the calculation of D and Q. These two methods yielded statistically indistinguishable results, with the following pooled means (+/- SEM): (formula: see text) At each temperature, D was independent of muscle thickness (range, 0.67-1.34 mm). The activation energy (EA) for diffusion of oxygen in muscle was - 3.85 kcal/mol, which closely matches the corresponding value in water. Together with absolute values of D in water taken from the literature, the present data imply that (Dmuscle/DH2O) is in the range 0.59-0.69. This value, and that of EA, are in agreement with the theory of Wang (1954, J. Am. Chem. Soc. 76:4755-4763), suggesting that with respects to the diffusion of O2, to a useful approximation, frog skeletal muscle may be considered simply as a homogeneous protein solution.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLINKS J. R. INFLUENCE OF OSMOTIC STRENGTH ON CROSS-SECTION AND VOLUME OF ISOLATED SINGLE MUSCLE FIBRES. J Physiol. 1965 Mar;177:42–57. doi: 10.1113/jphysiol.1965.sp007574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Battino R., Evans F. D., Danforth W. F. The solubilities of seven gases in olive oil with reference to theories of transport through the cell membrane. J Am Oil Chem Soc. 1968 Dec;45(12):830–833. doi: 10.1007/BF02540163. [DOI] [PubMed] [Google Scholar]
  3. Boldyrev A. A., Tkachuk V. A., Titanji P. V. Activation energy of skeletal muscle sarcolemmal Na+,K+-adenosine triphosphatase. Biochim Biophys Acta. 1974 Aug 23;357(2):319–324. doi: 10.1016/0005-2728(74)90070-x. [DOI] [PubMed] [Google Scholar]
  4. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caillé J. P., Hinke J. A. The volume available to diffusion in the muscle fiber. Can J Physiol Pharmacol. 1974 Aug;52(4):814–828. doi: 10.1139/y74-107. [DOI] [PubMed] [Google Scholar]
  6. FATT I. AN ULTRAMICRO OXYGEN ELECTRODE. J Appl Physiol. 1964 Mar;19:326–329. doi: 10.1152/jappl.1964.19.2.326. [DOI] [PubMed] [Google Scholar]
  7. Fischkoff S., Vanderkooi J. M. Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J Gen Physiol. 1975 May;65(5):663–676. doi: 10.1085/jgp.65.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GROTE J., THEWS G. [Requirements for the oxygen supply of heart muscle tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1962;276:142–165. [PubMed] [Google Scholar]
  9. Gore R. W., Whalen W. J. Relations among tissue PO2, QO2, and resting heat production of frog sartorius muscle. Am J Physiol. 1968 Feb;214(2):277–286. doi: 10.1152/ajplegacy.1968.214.2.277. [DOI] [PubMed] [Google Scholar]
  10. Grote J. Die Sauerstoffdiffusionskonstanten im Lungengewebe und Wasser und ihre Temperaturabhängigkeit. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(3):245–254. [PubMed] [Google Scholar]
  11. HILL A. V., HOWARTH J. V. The effect of potassium on the resting metabolism of the frog's sartorius. Proc R Soc Lond B Biol Sci. 1957 Aug 24;147(926):21–43. doi: 10.1098/rspb.1957.0034. [DOI] [PubMed] [Google Scholar]
  12. Hazlewood C. F., Chang D. C., Nichols B. L., Woessner D. E. Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle. Biophys J. 1974 Aug;14(8):583–606. doi: 10.1016/S0006-3495(74)85937-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill A. V. The total energy exchanges of intact cold-blooded animals at rest. J Physiol. 1911 Dec 22;43(5):379–394. doi: 10.1113/jphysiol.1911.sp001480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hill D. K. Oxygen tension and the respiration of resting frog's muscle. J Physiol. 1948 Sep 30;107(4):479–495. doi: 10.1113/jphysiol.1948.sp004293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hill D. K. The time course of the oxygen consumption of stimulated frog's muscle. J Physiol. 1940 May 14;98(2):207–227. doi: 10.1113/jphysiol.1940.sp003845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hinke J. A., Caillé J. P., Gayton D. C. Distribution and state of monovalent ions in skeletal muscle based on ion electrode, isotope, and diffusion analyses. Ann N Y Acad Sci. 1973 Mar 30;204:274–296. doi: 10.1111/j.1749-6632.1973.tb30785.x. [DOI] [PubMed] [Google Scholar]
  17. Kawashiro T., Nüsse W., Scheid P. Determination of diffusivity of oxygen and carbon dioxide in respiring tissue: results in rat skeletal muscle. Pflugers Arch. 1975 Sep 9;359(3):231–251. doi: 10.1007/BF00587382. [DOI] [PubMed] [Google Scholar]
  18. Krogh A. The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J Physiol. 1919 May 20;52(6):391–408. doi: 10.1113/jphysiol.1919.sp001838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kushmerick M. J., Paul R. J. Aerobic recovery metabolism following a single isometric tetanus in frog sartorius muscle at 0 degrees C. J Physiol. 1976 Jan;254(3):693–709. doi: 10.1113/jphysiol.1976.sp011253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
  21. Levin R. L., Cravalho E. G., Huggins C. E. Effect of hydration on the water content of human erythrocytes. Biophys J. 1976 Dec;16(12):1411–1426. doi: 10.1016/S0006-3495(76)85784-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Levy H. M., Sharon N., Koshland D. E. PURIFIED MUSCLE PROTEINS AND THE WALKING RATE OF ANTS. Proc Natl Acad Sci U S A. 1959 Jun;45(6):785–791. doi: 10.1073/pnas.45.6.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Longmuir I. S., Martin D. C., Gold H. J., Sun S. Nonclassical respiratory activity of tissue slices. Microvasc Res. 1971 Apr;3(2):125–141. doi: 10.1016/0026-2862(71)90017-3. [DOI] [PubMed] [Google Scholar]
  24. Mahler M. Kinetics of oxygen consumption after a single isometric tetanus of frog sartorius muscle at 20 degrees C. J Gen Physiol. 1978 May;71(5):559–580. doi: 10.1085/jgp.71.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Palmer L. G., Gulati J. Potassium accumulation in muscle: a test of the binding hypothesis. Science. 1976 Oct 29;194(4264):521–523. doi: 10.1126/science.1085986. [DOI] [PubMed] [Google Scholar]
  26. TASKER P., SIMON S. E., JOHNSTONE B. M., SHANKLY K. H., SHAW F. H. The dimensions of the extracellular space in sartorius muscle. J Gen Physiol. 1959 Sep;43:39–53. doi: 10.1085/jgp.43.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takahashi G. H., Fatt I., Goldstick T. K. Oxygen consumption rate of tissue measured by a micropolarographic method. J Gen Physiol. 1966 Nov;50(2):317–335. doi: 10.1085/jgp.50.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wittenberg J. B. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol Rev. 1970 Oct;50(4):559–636. doi: 10.1152/physrev.1970.50.4.559. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES