Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1978 May 1;71(5):509–531. doi: 10.1085/jgp.71.5.509

The calcium current of Helix neuron

PMCID: PMC2215105  PMID: 660160

Abstract

Calcium current, Ica, was studied in isolated nerve cell bodies of Helix aspersa after suppression of Na+ and K+ currents. The suction pipette method described in the preceding paper was used. Ica rises to a peak value and then subsides exponentially and has a null potential of 150 mV or more and a relationship with [Ca2+]o that is hyperbolic over a small range of [Ca2+]o's. When [Ca2+]i is increased, Ica is reduced disproportionately, but the effect is not hyperbolic. Ica is blocked by extracellular Ni2+, La3+, Cd2+, and Co2+ and is greater when Ba2+ and Sr2+ carry the current. Saturation and blockage are described by a Langmuir adsorption relationship similar to that found in Balanus. Thus, the calcium conductance probably contains a site which binds the ions referred to. The site also appears to be voltage-dependent. Activation and inactivation of Ica are described by first order kinetics, and there is evidence that the processes are coupled. For example, inactivation is delayed slightly in its onset and tau inactivation depends upon the method of study. However, the currents are described equally well by either a noncoupled Hodgkin-Huxley mh scheme or a coupled reaction. Facilitation of Ica by prepulses was not observed. For times up to 50 ms, currents even at small depolarizations were accounted for by suitable adjustment of the activation and inactivation rate constants.

Full Text

The Full Text of this article is available as a PDF (954.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol. 1971 Oct;58(4):413–437. doi: 10.1085/jgp.58.4.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong C. M. Time course of TEA(+)-induced anomalous rectification in squid giant axons. J Gen Physiol. 1966 Nov;50(2):491–503. doi: 10.1085/jgp.50.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker P. F., Hodgkin A. L., Ridgway E. B. Depolarization and calcium entry in squid giant axons. J Physiol. 1971 Nov;218(3):709–755. doi: 10.1113/jphysiol.1971.sp009641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eckert R., Lux H. D. A voltage-sensitive persistent calcium conductance in neuronal somata of Helix. J Physiol. 1976 Jan;254(1):129–151. doi: 10.1113/jphysiol.1976.sp011225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eckert R., Tillotson D., Ridgway E. B. Voltage-dependent facilitation of Ca2+ entry in voltage-clamped, aequorin-injected molluscan neurons. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1748–1752. doi: 10.1073/pnas.74.4.1748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldman L. Kinetics of channel gating in excitable membranes. Q Rev Biophys. 1976 Nov;9(4):491–526. doi: 10.1017/s0033583500002651. [DOI] [PubMed] [Google Scholar]
  9. Goldman L., Schauf C. L. Quantitative description of sodium and potassium currents and computed action potentials in Myxicola giant axons. J Gen Physiol. 1973 Mar;61(3):361–384. doi: 10.1085/jgp.61.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hagiwara S. Ca-dependent action potential. Membranes. 1975;3:359–381. [PubMed] [Google Scholar]
  13. Hagiwara S., Takahashi K. Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J Gen Physiol. 1967 Jan;50(3):583–601. doi: 10.1085/jgp.50.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kostyuk P. G., Krishtal O. A., Doroshenko P. A. Calcium currents in snail neurones. I. Identification of calcium current. Pflugers Arch. 1974 Apr 11;348(2):83–93. doi: 10.1007/BF00586471. [DOI] [PubMed] [Google Scholar]
  16. Kostyuk P. G., Krishtal O. A., Doroshenko P. A. Calcium currents in snail neurones. II. The effect of external calcium concentration on the calcium inward current. Pflugers Arch. 1974 Apr 11;348(2):95–104. doi: 10.1007/BF00586472. [DOI] [PubMed] [Google Scholar]
  17. Kostyuk P. G., Krishtal O. A., Shakhovalov Y. A. Separation of sodium and calcium currents in the somatic membrane of mollusc neurones. J Physiol. 1977 Sep;270(3):545–568. doi: 10.1113/jphysiol.1977.sp011968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee K. S., Akaike N., Brown A. M. Properties of internally perfused, voltage-clamped, isolated nerve cell bodies. J Gen Physiol. 1978 May;71(5):489–507. doi: 10.1085/jgp.71.5.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Magura I. S. Long-lasting inward current in snail neurons in barium solutions in voltage-clamp conditions. J Membr Biol. 1977 Jul 14;35(3):239–256. doi: 10.1007/BF01869952. [DOI] [PubMed] [Google Scholar]
  20. McLaughlin S. G., Szabo G., Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol. 1971 Dec;58(6):667–687. doi: 10.1085/jgp.58.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES