Abstract
When retinas from dark-adapted C57BL/6 mice were incubated in the dark for 5 min at 37 degrees C in Earle's medium, they contained 80-120 pmol/mg protein of cGMP and about 13 pmol/mg protein of cAMP. When the incubation in darkness was in calcium-deficient Earle's medium with 3 mM EGTA, a 10-20 fold increase occurred in the cGMP level, peaking at 2- 3 min, but no change occurred in cAMP. This elevated level fell in 3 min to normal dark levels on return to normal Earle's medium, but was still about three times that of control levels after 15 min in EGTA- containing solution. Bright light after 2 min of dark incubation of dark-adapted retinas resulted in a 40-50% fall in cGMP, and bright light sharply reduced the elevated dark cGMP level of retinas in calcium-deficient media with 3 mM EDTA. However, no depression of normal dark levels of cGMP has thus far been obtained by increasing external calcium levels, even in the presence of the ionophore A23187. All the above phenomena involving dark cGMP levels and calcium are similar in Earle's medium with 100 mM of K+ substituted for Na+. Congenic rodless (rd/rd) mouse retinas have less than 5% of control cGMP and show only traces of calcium sensitivity. Thus, the above phenomena in controls are likely to be largely occurring in rods. The data suggest a dependency of the dark cGMP level on the calcium level, but that the light-induced fall in cGMP may largely be calcium insensitive.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berridge M. J. The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv Cyclic Nucleotide Res. 1975;6:1–98. [PubMed] [Google Scholar]
- Bignetti E., Cavaggioni A. Metabolism of the frog outer segments: a kinetic study. J Physiol. 1977 Sep;270(3):705–717. doi: 10.1113/jphysiol.1977.sp011977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bitensky M. W., Miki N., Keirns J. J., Keirns M., Baraban J. M., Freeman J., Wheeler M. A., Lacy J., Marcus F. R. Activation of photoreceptor disk membrane phosphodiesterase by light and ATP. Adv Cyclic Nucleotide Res. 1975;5:213–240. [PubMed] [Google Scholar]
- Bownds D., Dawes J., Miller J., Stahlman M. Phosphorylation of frog photoreceptor membranes induced by light. Nat New Biol. 1972 May 24;237(73):125–127. doi: 10.1038/newbio237125a0. [DOI] [PubMed] [Google Scholar]
- Brown J. E., Coles J. A., Pinto L. H. Effects of injections of calcium and EGTA into the outer segments of retinal rods of Bufo marinus. J Physiol. 1977 Aug;269(3):707–722. doi: 10.1113/jphysiol.1977.sp011924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. E., Pinto L. H. Ionic mechanism for the photoreceptor potential of the retina of Bufo marinus. J Physiol. 1974 Feb;236(3):575–591. doi: 10.1113/jphysiol.1974.sp010453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONE R. A. QUANTUM RELATIONS OF THE RAT ELECTRORETINOGRAM. J Gen Physiol. 1963 Jul;46:1267–1286. doi: 10.1085/jgp.46.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chader G., Fletcher R., Johnson M., Bensinger R. Rod outer segment phosphodiesterase: factors affecting the hydrolysis of cyclic-AMP and cyclic-GMP. Exp Eye Res. 1974 Jun;18(6):509–515. doi: 10.1016/0014-4835(74)90057-8. [DOI] [PubMed] [Google Scholar]
- Cohen A. I., McDaniel M., Orr H. Absolute levels of some free amino acids in normal and biologically fractionated retinas. Invest Ophthalmol. 1973 Sep;12(9):686–693. [PubMed] [Google Scholar]
- Farber D. B., Lolley R. N. Cyclic guanosine monophosphate: elevation in degenerating photoreceptor cells of the C3H mouse retina. Science. 1974 Nov 1;186(4162):449–451. doi: 10.1126/science.186.4162.449. [DOI] [PubMed] [Google Scholar]
- Farber D. B., Lolley R. N. Enzymic basis for cyclic GMP accumulation in degenerative photoreceptor cells of mouse retina. J Cyclic Nucleotide Res. 1976;2(3):139–148. [PubMed] [Google Scholar]
- Farber D. B., Lolley R. N. Light-induced reduction in cyclic GMP of retinal photoreceptor cells in vivo: abnormalities in the degenerative diseases of RCS rats and rd mice. J Neurochem. 1977 May;28(5):1089–1095. doi: 10.1111/j.1471-4159.1977.tb10673.x. [DOI] [PubMed] [Google Scholar]
- Ferrendelli J. A., Cohen A. I. The effects of light and dark adaptation on the levels of cyclic nucleotides in retinas of mice heterozygous for a gene for photoreceptor dystrophy. Biochem Biophys Res Commun. 1976 Nov 22;73(2):421–427. doi: 10.1016/0006-291x(76)90724-5. [DOI] [PubMed] [Google Scholar]
- Ferrendelli J. A., Rubin E. H., Kinscherf D. A. Influence of divalent cations on regulation of cyclic GMP and cyclic AMP levels in brain tissue. J Neurochem. 1976 Apr;26(4):741–748. doi: 10.1111/j.1471-4159.1976.tb04447.x. [DOI] [PubMed] [Google Scholar]
- Fletcher R. T., Chader G. J. Cyclic GMP: control of concentration by light in retinal photoreceptors. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1297–1302. doi: 10.1016/0006-291x(76)91043-3. [DOI] [PubMed] [Google Scholar]
- Goridis C. The effect of flash illumination on the endogenous cyclic GMP content of isolated frog retinae. Exp Eye Res. 1977 Feb;24(2):171–177. doi: 10.1016/0014-4835(77)90257-3. [DOI] [PubMed] [Google Scholar]
- Goridis C., Virmaux N., Cailla H. L., Delaage M. A. Rapid, light-induced changes of retinal cyclic GMP levels. FEBS Lett. 1974 Dec 15;49(2):167–169. doi: 10.1016/0014-5793(74)80503-x. [DOI] [PubMed] [Google Scholar]
- Hagins W. A., Robinson W. E., Yoshikami S. Ionic aspects of excitation in rod outer segments. Ciba Found Symp. 1975;(31):169–189. doi: 10.1002/9780470720134.ch10. [DOI] [PubMed] [Google Scholar]
- Hagins W. A. The visual process: Excitatory mechanisms in the primary receptor cells. Annu Rev Biophys Bioeng. 1972;1:131–158. doi: 10.1146/annurev.bb.01.060172.001023. [DOI] [PubMed] [Google Scholar]
- Hagins W. A., Yoshikami S. Proceedings: A role for Ca2+ in excitation of retinal rods and cones. Exp Eye Res. 1974 Mar;18(3):299–305. doi: 10.1016/0014-4835(74)90157-2. [DOI] [PubMed] [Google Scholar]
- Harper J. F., Brooker G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res. 1975;1(4):207–218. [PubMed] [Google Scholar]
- KARLI P., STOECKEL M. E., PORTE A. D'EG'EN'ERESCENCE DES CELLULES VISUELLES PHOTOR'ECEPTRICES ET PERSISTANCE D'UNE SENSIBILIT'E DE LA R'ETINE A LA STIMULATION PHOTIQUE. OBSERVATIONS AU MICROSCOPE 'ELECTRONIQUE. Z Zellforsch Mikrosk Anat. 1965;65:238–252. [PubMed] [Google Scholar]
- Krishna G., Krishnan N., Fletcher R. T., Chader G. Effects of light on cyclic GMP metabolism in retinal photoreceptors. J Neurochem. 1976 Sep;27(3):717–722. doi: 10.1111/j.1471-4159.1976.tb10399.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Liebman P. A. Light-dependent Ca++ content of rod outer segment disc membranes. Invest Ophthalmol. 1974 Sep;13(9):700–701. [PubMed] [Google Scholar]
- Lipton S. A., Ostroy S. E., Dowling J. E. Electrical and adaptive properties of rod photoreceptors in Bufo marinus. I. Effects of altered extracellular Ca2+ levels. J Gen Physiol. 1977 Dec;70(6):747–770. doi: 10.1085/jgp.70.6.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipton S. A., Rasmussen H., Dowling J. E. Electrical and adaptive properties of rod photoreceptors in Bufo marinus. II. Effects of cyclic nucleotides and prostaglandins. J Gen Physiol. 1977 Dec;70(6):771–791. doi: 10.1085/jgp.70.6.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lolley R. N., Brown B. M., Farber D. B. Protein phosphorylation in rod outer segments from bovine retina: cyclic nucleotide-activated protein kinase and its endogenous substrate. Biochem Biophys Res Commun. 1977 Sep 23;78(2):572–578. doi: 10.1016/0006-291x(77)90217-0. [DOI] [PubMed] [Google Scholar]
- Orr H. T., Lowry O. H., Cohen A. I., Ferrendelli J. A. Distribution of 3':5'-cyclic AMP and 3':5'-cyclic GMP in rabbit retina in vivo: selective effects of dark and light adaptation and ischemia. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4442–4445. doi: 10.1073/pnas.73.12.4442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen H. Calcium and cyclic nucleotides as universal second messengers. Soc Gen Physiol Ser. 1977;32:243–268. [PubMed] [Google Scholar]
- Rasmussen H., Goodman D. B. Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev. 1977 Jul;57(3):421–509. doi: 10.1152/physrev.1977.57.3.421. [DOI] [PubMed] [Google Scholar]
- Rasmussen H., Jensen P., Lake W., Friedmann N., Goodman D. B. Cyclic nucleotides and cellular calcium metabolism. Adv Cyclic Nucleotide Res. 1975;5:375–394. [PubMed] [Google Scholar]
- Ross D., Cohen A. I., McDougal D. B., Jr Choline acetyltransferase and acetylcholine esterase activities in normal and biologically fractionated mouse retinas. Invest Ophthalmol. 1975 Oct;14(10):756–761. [PubMed] [Google Scholar]
- Sillman A. J., Ito H., Tomita T. Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. Vision Res. 1969 Dec;9(12):1435–1442. doi: 10.1016/0042-6989(69)90059-5. [DOI] [PubMed] [Google Scholar]
- Smith H. G., Jr, Fager R. S., Litman R. J. Light-activated calcium release from sonicated bovine retinal rod outer segment disks. Biochemistry. 1977 Apr 5;16(7):1399–1405. doi: 10.1021/bi00626a025. [DOI] [PubMed] [Google Scholar]
- Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
- Weller M., Virmaux N., Mandel P. Light-stimulated phosphorylation of rhodopsin in the retina: the presence of a protein kinase that is specific for photobleached rhodopsin. Proc Natl Acad Sci U S A. 1975 Jan;72(1):381–385. doi: 10.1073/pnas.72.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weller M., Virmaux N., Mandel P. Role of light and rhodopsin phosphorylation in control of permeability of retinal rod outer segment disks to Ca2plus. Nature. 1975 Jul 3;256(5512):68–70. doi: 10.1038/256068a0. [DOI] [PubMed] [Google Scholar]
- Wheeler G. L., Matuto Y., Bitensky M. W. Light-activated GTPase in vertebrate photoreceptors. Nature. 1977 Oct 27;269(5631):822–824. doi: 10.1038/269822a0. [DOI] [PubMed] [Google Scholar]
- Winkler B. S. Dependence of fast components of the electroretinogram of the isolated rat retina on the ionic environment. Vision Res. 1973 Feb;13(2):457–463. doi: 10.1016/0042-6989(73)90123-5. [DOI] [PubMed] [Google Scholar]
- Woodruff M. L., Bownds D., Green S. H., Morrisey J. L., Shedlovsky A. Guanosine 3',5'-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes. J Gen Physiol. 1977 May;69(5):667–679. doi: 10.1085/jgp.69.5.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
