Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1978 Jun 1;71(6):721–746. doi: 10.1085/jgp.71.6.721

Effects of bicarbonate on lithium transport in human red cells

PMCID: PMC2215110  PMID: 670928

Abstract

Lithium influx into human erythrocytes increased 12-fold, when chloride was replaced with bicarbonate in a 150 mM lithium medium (38 degrees C. pH 7.4). The increase was linearly related to both lithium- and bicarbonate concentration, and was completely eliminated by the amino reagent 4, 4'- diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). DIDS binds to an integral membrane protein (mol wt approximately 10(5) dalton) involved in anion exchange. Inhibition of both anion exchange and of bicarbonate-stimulated lithium influx was linearly related to DIDS binding. 1.1 X 10(6) DIDS molecules per cell caused complete inhibition of both processes. Both Cl- and Li+ can apparently be transported by the anion transport mechanism. The results support our previous proposal that bicarbonate-induced lithium permeability is due to transport of lithium-carbonate ion pairs (LiCO-3). DIDS-sensitive lithium influx had a high activation energy (24 kcal/mol), compatible with transport by the anion exchange mechanism. We have examined how variations of passive lithium permeability, induced by bicarbonate, affect the sodium-driven lithium counter-transport in human erythrocytes. The ability of the counter-transport system to establish a lithium gradient across the membrane decrease linearly with bicarbonate concentration in the medium. The counter-transport system was unaffected by DIDS treatement. At a plasma bicarbonate concentration of 24 mM, two-thirds of the lithium influx is mediated by the bicarbonate-stimulated pathway, and the fraction will increase significantly in metabolic alkalosis.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brahm J., Wieth J. O. Separative pathways for urea and water, and for chloride in chicken erythrocytes. J Physiol. 1977 Apr;266(3):727–749. doi: 10.1113/jphysiol.1977.sp011790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  4. Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duhm J., Becker B. F. Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole. Pflugers Arch. 1977 Jan 17;367(3):211–219. doi: 10.1007/BF00581357. [DOI] [PubMed] [Google Scholar]
  6. Duhm J., Becker B. F. Studies on the lithium transport across the red cell membrane. III. Factors contributing to the intraindividual variability of the in vitro Li+ distribution across the human red cell membrane. Pflugers Arch. 1977 Apr 25;368(3):203–208. doi: 10.1007/BF00585197. [DOI] [PubMed] [Google Scholar]
  7. Duhm J., Eisenried F., Becker B. F., Greil W. Studies on the lithium transport across the red cell membrane. I. Li+ uphill transport by the Na+-dependent Li+ counter-transport system of human erythrocytes. Pflugers Arch. 1976 Jul 30;364(2):147–155. doi: 10.1007/BF00585183. [DOI] [PubMed] [Google Scholar]
  8. Funder J., Wieth J. O. Combined effects of digitalis therapy and of plasma bicarbonate on human red cell socium and potassium. Scand J Clin Lab Invest. 1974 Oct;34(2):153–160. [PubMed] [Google Scholar]
  9. Funder J., Wieth J. O. Effect of ouabain on gluclose metabolism and on fluxes of sodium and potassium of human blood cells. Acta Physiol Scand. 1967 Sep;71(1):113–124. doi: 10.1111/j.1748-1716.1967.tb03716.x. [DOI] [PubMed] [Google Scholar]
  10. Funder J., Wieth J. O. Effects of some monovalent anions on fluxes of Na and K, and on glucose metabolism of ouabain treated human red cells. Acta Physiol Scand. 1967 Oct-Nov;71(2):168–185. doi: 10.1111/j.1748-1716.1967.tb03723.x. [DOI] [PubMed] [Google Scholar]
  11. Gunn R. B., Dalmark M., Tosteson D. C., Wieth J. O. Characteristics of chloride transport in human red blood cells. J Gen Physiol. 1973 Feb;61(2):185–206. doi: 10.1085/jgp.61.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haas M., Schooler J., Tosteson D. C. Coupling of lithium to sodium transport in human red cells. Nature. 1975 Dec 4;258(5534):425–427. doi: 10.1038/258425a0. [DOI] [PubMed] [Google Scholar]
  13. Halestrap A. P. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem J. 1976 May 15;156(2):193–207. doi: 10.1042/bj1560193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KEITER H. G., BERMAN H., JONES H., MACLACHLAN E. The chemical composition of normal human red blood cells, including variability among centrifuged cells. Blood. 1955 Apr;10(4):370–376. [PubMed] [Google Scholar]
  15. Kaplan J. H., Passow H. Effects of phlorizin on net chloride movements across the valinomycin-treated erythrocyte membrane. J Membr Biol. 1974;19(1):179–194. doi: 10.1007/BF01869977. [DOI] [PubMed] [Google Scholar]
  16. Knauf P. A., Fuhrmann G. F., Rothstein S., Rothstein A. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol. 1977 Mar;69(3):363–386. doi: 10.1085/jgp.69.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lepke S., Fasold H., Pring M., Passow H. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4'-diisothiocyano stilbene-2,2'-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS). J Membr Biol. 1976 Oct 20;29(1-2):147–177. doi: 10.1007/BF01868957. [DOI] [PubMed] [Google Scholar]
  18. MADDY A. H. A FLUORESCENT LABEL FOR THE OUTER COMPONENTS OF THE PLASMA MEMBRANE. Biochim Biophys Acta. 1964 Sep 25;88:390–399. doi: 10.1016/0926-6577(64)90194-9. [DOI] [PubMed] [Google Scholar]
  19. Mendels J., Frazer A. Alterations in cell membrane activity in depression. Am J Psychiatry. 1974 Nov;131(11):1240–1246. doi: 10.1176/ajp.131.11.1240. [DOI] [PubMed] [Google Scholar]
  20. Pandey G. N., Ostrow D. G., Haas M., Dorus E., Casper R. C., Davis J. M., Tosteson D. C. Abnormal lithium and sodium transport in erythrocytes of a manic patient and some members of his family. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3607–3611. doi: 10.1073/pnas.74.8.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ship S., Shami Y., Breuer W., Rothstein A. Synthesis of tritiated 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid ([3H]DIDS) and its covalent reaction with sites related to anion transport in human red blood cells. J Membr Biol. 1977 May 12;33(3-4):311–323. doi: 10.1007/BF01869522. [DOI] [PubMed] [Google Scholar]
  22. Wieth J. O. Effects of bicarbonate and thiocyanate on fluxes of Na and K, and on glucose metabolism of actively transporting human red cells. Acta Physiol Scand. 1969 Mar;75(3):313–329. doi: 10.1111/j.1748-1716.1969.tb04384.x. [DOI] [PubMed] [Google Scholar]
  23. Wieth J. O., Funder J. An effect of anoins on transfer of sodium through the human red cell membrane. Scand J Clin Lab Invest. 1965;17(4):399–400. doi: 10.3109/00365516509077069. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES