Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1978 Jun 1;71(6):615–643. doi: 10.1085/jgp.71.6.615

Patterned response to odor in single neurones of goldfish olfactory bulb: influence of odor quality and other stimulus parameters

PMCID: PMC2215113  PMID: 209126

Abstract

Responses of 75 single units in the goldfish olfactory bulb were analyzed in detail for their relationship to the time-course of the change in odor concentration during each odor stimulus. Odor stimuli were controlled for rise time, duration, and peak concentration by an apparatus developed for the purpose. This apparatus enabled aqueous odor stimuli to be interposed into a constant water stream without changes in flow rate. The time-course of the concentration change within the olfactory sac was inferred from conductivity measurements at the incurrent and excurrent nostrils. Temporal patterns of firing rate elicited by stimuli with relatively slow rising and falling phases could be quite complex combinations of excitation and suppression. Different temporal patterns were produced by different substances at a single concentration in most units. Statistical measures of the temporal pattern of response for a small number of cells at a given concentration were more characteristic of the stimulus substance than any of three measures of magnitude of response. The temporal patterns change when the peak concentration, duration, and rise time of the stimuli are varied. The nature of these changes suggests that the different patterns are due primarily to the combined influence of two factors: (a) a stimulus whose concentration varies over time and (b) a relationship between concentration and impulse frequency which varies from unit to unit. Some units produce patterns suggestive of influence by neural events of long time constant. The importance of temporal patterns in odor quality and odor intensity coding is discussed.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN E. D. Sensory messages and sensation; the response of the olfactory organ to different smells. Acta Physiol Scand. 1953 Jun 26;29(1):5–14. doi: 10.1111/j.1748-1716.1953.tb00990.x. [DOI] [PubMed] [Google Scholar]
  2. DOEVING K. B. STUDIES OF THE RELATION BETWEEN THE FROG'S ELECTRO-OLFACTOGRAM (EOG) AND SINGLE UNIT ACTIVITY IN THE OLFACTORY BULB. Acta Physiol Scand. 1964 Jan-Feb;60:150–163. doi: 10.1111/j.1748-1716.1964.tb02878.x. [DOI] [PubMed] [Google Scholar]
  3. Doving K. B., Hyvärinen J. Afferent and efferent influences on the activity pattern of single olfactory neurons. Acta Physiol Scand. 1969 Jan-Feb;75(1):111–123. doi: 10.1111/j.1748-1716.1969.tb04362.x. [DOI] [PubMed] [Google Scholar]
  4. Döving K. B. Efferent influence upon the activity of single neurons in the olfactory bulb of the burbot. J Neurophysiol. 1966 Jul;29(4):675–683. doi: 10.1152/jn.1966.29.4.675. [DOI] [PubMed] [Google Scholar]
  5. Döving K. B. The influence of olfactory stimuli upon the activity of secondary neurones in the burbot (Lota lota L.). Acta Physiol Scand. 1966 Mar;66(3):290–299. doi: 10.1111/j.1748-1716.1966.tb03202.x. [DOI] [PubMed] [Google Scholar]
  6. FUORTES M. G., FRANK K., BECKER M. C. Steps in the production of motoneuron spikes. J Gen Physiol. 1957 May 20;40(5):735–752. doi: 10.1085/jgp.40.5.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Getchell T. V. Unitary responses in frog olfactory epithelium to sterically related molecules at low concentrations. J Gen Physiol. 1974 Aug;64(2):241–261. [PMC free article] [PubMed] [Google Scholar]
  8. Giachetti I., Mac Leod P. Supériorité du pouvoir discriminateru des cellules mitrales comparé à celui des récepteurs olfactifs. J Physiol (Paris) 1973;66(4):399–407. [PubMed] [Google Scholar]
  9. Holley A., Duchamp A., Revial M. F., Juge A. Qualitative and quantitative discrimination in the frog olfactory receptors: analysis from electrophysiological data. Ann N Y Acad Sci. 1974 Sep 27;237(0):102–114. doi: 10.1111/j.1749-6632.1974.tb49847.x. [DOI] [PubMed] [Google Scholar]
  10. Hornung D. E., Lansing R. D., Mozell M. M. Distribution of butanol molecules along bullfrog olfactory mucosa. Nature. 1975 Apr 17;254(5501):617–618. doi: 10.1038/254617a0. [DOI] [PubMed] [Google Scholar]
  11. IDLER D. R., FAGERLUND U. H., MAYOH H. Olfactory perception in migrating salmon. I. L-serine, a salmon repellent in mammalian skin. J Gen Physiol. 1956 Jul 20;39(6):889–892. doi: 10.1085/jgp.39.6.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kauer J. S. Response patterns of amphibian olfactory bulb neurones to odour stimulation. J Physiol. 1974 Dec;243(3):695–715. doi: 10.1113/jphysiol.1974.sp010772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MOULTON D. G., TUCKER D. ELECTROPHYSIOLOGY OF THE OLFACTORY SYSTEM. Ann N Y Acad Sci. 1964 Jul 30;116:380–428. doi: 10.1111/j.1749-6632.1964.tb45071.x. [DOI] [PubMed] [Google Scholar]
  14. MOZELL M. M. EVIDENCE FOR SORPTION AS A MECHANISM OF THE OLFACTORY ANALYSIS OF VAPOURS. Nature. 1964 Sep 12;203:1181–1182. doi: 10.1038/2031181a0. [DOI] [PubMed] [Google Scholar]
  15. MOZELL M. M. Electrophysiology of olfactory bulb. J Neurophysiol. 1958 Mar;21(2):183–196. doi: 10.1152/jn.1958.21.2.183. [DOI] [PubMed] [Google Scholar]
  16. MacLeod N. K., Lowe G. A. Field potentials in the olfactory bulb of the rainbow trout (Salmo gairdneri): evidence for a dendrodendritic inhibitory pathway. Exp Brain Res. 1976 Jun 18;25(3):255–266. doi: 10.1007/BF00234017. [DOI] [PubMed] [Google Scholar]
  17. MacLeod N. K. Spontaneous activity of single neurons in the olfactory bulb of the rainbow trout (Salmo gairdneri) and its modulation by olfactory stimulation with amino acids. Exp Brain Res. 1976 Jun 18;25(3):267–278. doi: 10.1007/BF00234018. [DOI] [PubMed] [Google Scholar]
  18. Macrides F., Chorover S. L. Olfactory bulb units: activity correlated with inhalation cycles and odor quality. Science. 1972 Jan 7;175(4017):84–87. doi: 10.1126/science.175.4017.84. [DOI] [PubMed] [Google Scholar]
  19. Mathews D. F. Response patterns of single neurons in the tortoise olfactory epithelium and olfactory bulb. J Gen Physiol. 1972 Aug;60(2):166–180. doi: 10.1085/jgp.60.2.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mathews D. F. Response patterns of single units in the olfactory bulb of the rat to odor. Brain Res. 1972 Dec 12;47(2):389–400. doi: 10.1016/0006-8993(72)90647-6. [DOI] [PubMed] [Google Scholar]
  21. Mozell M. M., Jagodowicz M. Chromatographic separation of odorants by the nose: retention times measured across in vivo olfactory mucosa. Science. 1973 Sep 28;181(4106):1247–1249. doi: 10.1126/science.181.4106.1247. [DOI] [PubMed] [Google Scholar]
  22. NELSON P. G., FRANK K. EXTRACELLULAR POTENTIAL FIELDS OF SINGLE SPINAL MOTONEURONS. J Neurophysiol. 1964 Sep;27:913–927. doi: 10.1152/jn.1964.27.5.913. [DOI] [PubMed] [Google Scholar]
  23. Nanba R., Djahanparwar B., v Baumgarten R. Erregungsmuster einzelner Fasern des Tractus olfactorius lateralis des Fisches bei Reizung mit verschiedenen Geruchsstoffen. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;288(2):134–150. doi: 10.1007/BF00362564. [DOI] [PubMed] [Google Scholar]
  24. O'Connell R. J., Mozell M. M. Quantitative stimulation of frog olfactory receptors. J Neurophysiol. 1969 Jan;32(1):51–63. doi: 10.1152/jn.1969.32.1.51. [DOI] [PubMed] [Google Scholar]
  25. Ottoson D., Shepherd G. M. Length changes within isolated frog muscle spindle during and after stretching. J Physiol. 1970 May;207(3):747–759. doi: 10.1113/jphysiol.1970.sp009092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pfaff D. W., Gregory E. Olfactory coding in olfactory bulb and medial forebrain bundle of normal and castrated male rats. J Neurophysiol. 1971 Mar;34(2):208–216. doi: 10.1152/jn.1971.34.2.208. [DOI] [PubMed] [Google Scholar]
  27. Price J. L., Powell T. P. The afferent connexions of the nucleus of the horizontal limb of the diagonal band. J Anat. 1970 Sep;107(Pt 2):239–256. [PMC free article] [PubMed] [Google Scholar]
  28. Shepherd G. M. Synaptic organization of the mammalian olfactory bulb. Physiol Rev. 1972 Oct;52(4):864–917. doi: 10.1152/physrev.1972.52.4.864. [DOI] [PubMed] [Google Scholar]
  29. Suzuki N., Tucker D. Amino acids as olfactory stimuli in freshwater catfish, Ictalurus catus (Linn.). Comp Biochem Physiol A Comp Physiol. 1971 Oct;40(2):399–404. doi: 10.1016/0300-9629(71)90030-2. [DOI] [PubMed] [Google Scholar]
  30. TUCKER D. Physical variables in the olfactory stimulation process. J Gen Physiol. 1963 Jan;46:453–489. doi: 10.1085/jgp.46.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES