Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1979 Apr 1;73(4):385–402. doi: 10.1085/jgp.73.4.385

Effects of ouabain on fluid transport and electrical properties of Necturus gallbladder. Evidence in favor of a neutral basolateral sodium transport mechanism

PMCID: PMC2215172  PMID: 448325

Abstract

Net fluid transport (Jv) and electrical properties of the cell membranes and paracellular pathway of Necturus gallbladder epithelium were studied before and after the addition of ouabain (10(-4) M) to the serosal bathing medium. The glycoside inhibited Jv by 70% in 15 min and by 100% in 30 min. In contrast, the potentials across both cell membranes did not decrease significantly until 20 min of exposure to ouabain. At 30 min, the basolateral membrane potential (Vcs) fell only by ca 7 mV. If basolateral Na transport were electrogenic, with a coupling ratio (Na:K) of 3:2, the reductions of Vcs at 15 and 30 min should be 12--15 and 17--21 mV, respectively. Thus, we conclude that the mechanism of Na transport from the cells to the serosal bathing solution is not electrogenic under normal transport conditions. The slow depolarization observed in ouabain is caused by a fall of intracellular K concentration, and by a decrease in basolateral cell membrane K permeability. Prolonged exposure to ouabain results also in an increase in paracellular K selectivity, with no change of P Na/P Cl.

Full Text

The Full Text of this article is available as a PDF (935.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cremaschi D., Hénin S., Calvi M. Transepithelial potential difference induced by amphotericin B and NaCl-NaHCO 3 pump localization in gallbladder. Arch Int Physiol Biochim. 1971 Dec;79(5):889–901. doi: 10.3109/13813457109104848. [DOI] [PubMed] [Google Scholar]
  2. Cremaschi D., Hénin S., Meyer G., Bacciola T. Does amphotericin B unmask an electrogenic Na+ pump in rabbit gallbladder? Shift of gallbladders with negative to gallbladders with positive transepithelial p.d.'s. J Membr Biol. 1977 Jun 3;34(1):55–71. doi: 10.1007/BF01870293. [DOI] [PubMed] [Google Scholar]
  3. Cremaschi D., Hénin S. Na+ and Cl- transepithelial routes in rabbit gallbladder: tracer analysis of the transports. Pflugers Arch. 1975 Dec 19;361(1):33–41. doi: 10.1007/BF00587337. [DOI] [PubMed] [Google Scholar]
  4. DIAMOND J. M. The mechanism of solute transport by the gall-bladder. J Physiol. 1962 May;161:474–502. doi: 10.1113/jphysiol.1962.sp006899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DIAMOND J. M. The mechanism of water transport by the gall-bladder. J Physiol. 1962 May;161:503–527. doi: 10.1113/jphysiol.1962.sp006900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duffey M. E., Turnheim K., Frizzell R. A., Schultz S. G. Intracellular chloride activities in rabbit gallbladder: direct evidence for the role of the sodium-gradient in energizing "uphill" chloride transport. J Membr Biol. 1978 Sep 19;42(3):229–245. doi: 10.1007/BF01870360. [DOI] [PubMed] [Google Scholar]
  7. Frizzell R. A., Dugas M. C., Schultz S. G. Sodium chloride transport by rabbit gallbladder. Direct evidence for a coupled NaCl influx process. J Gen Physiol. 1975 Jun;65(6):769–795. doi: 10.1085/jgp.65.6.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hill B. S., Hill A. E. Fluid transfer by Necturus gall bladder epithelium as a function of osmolarity. Proc R Soc Lond B Biol Sci. 1978 Feb 23;200(1139):151–162. doi: 10.1098/rspb.1978.0012. [DOI] [PubMed] [Google Scholar]
  9. Lewis S. A., Eaton D. C., Clausen C., Diamond J. M. Nystatin as a probe for investigating the electrical properties of a tight epithelium. J Gen Physiol. 1977 Oct;70(4):427–440. doi: 10.1085/jgp.70.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lewis S. A., Eaton D. C., Diamond J. M. The mechanism of Na+ transport by rabbit urinary bladder. J Membr Biol. 1976 Aug 27;28(1):41–70. doi: 10.1007/BF01869690. [DOI] [PubMed] [Google Scholar]
  11. Lewis S. A., Wills N. K., Eaton D. C. Basolateral membrane potential of a tight epithelium: ionic diffusion and electrogenic pumps. J Membr Biol. 1978 Jun 28;41(2):117–148. doi: 10.1007/BF01972629. [DOI] [PubMed] [Google Scholar]
  12. Loewenstein W. R., Nakas M., Socolar S. J. Junctional membrane uncoupling. Permeability transformations at a cell membrane junction. J Gen Physiol. 1967 Aug;50(7):1865–1891. doi: 10.1085/jgp.50.7.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reuss L. Effects of amphotericin b on the electrical properties of Necturus gallbladder: intracellular microelectrode studies. J Membr Biol. 1978 Jun 22;41(1):65–86. doi: 10.1007/BF01873340. [DOI] [PubMed] [Google Scholar]
  14. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions. J Membr Biol. 1975 Dec 4;25(1-2):115–139. doi: 10.1007/BF01868571. [DOI] [PubMed] [Google Scholar]
  15. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane. J Membr Biol. 1975 Dec 4;25(1-2):141–161. doi: 10.1007/BF01868572. [DOI] [PubMed] [Google Scholar]
  16. Reuss L., Finn A. L. Mechanisms of voltage transients during current clamp in Necturus gallbladder. J Membr Biol. 1977 Dec 15;37(3-4):299–319. doi: 10.1007/BF01940937. [DOI] [PubMed] [Google Scholar]
  17. Rose R. C. Electrolyte absorption by gallbladders: models of transport. Life Sci. 1978 Oct 16;23(15):1517–1531. doi: 10.1016/0024-3205(78)90579-9. [DOI] [PubMed] [Google Scholar]
  18. Rose R. C., Nahrwold D. L. Electrolyte transport by gallbladders of rabbit and guinea pig: effect of amphotericin B and evidence of rheogenic Na transport. J Membr Biol. 1976 Oct 20;29(1-2):1–22. doi: 10.1007/BF01868949. [DOI] [PubMed] [Google Scholar]
  19. Rose R. C., Nahrwold D. L. Salt and water transport by rabbit and guinea pig gallbladder: effect of amphotericin B on NaCl influx. J Membr Biol. 1977 Dec 15;37(3-4):277–297. doi: 10.1007/BF01940936. [DOI] [PubMed] [Google Scholar]
  20. Suzuki K., Frömter E. The potential and resistance profile of Necturus gallbladder cells. Pflugers Arch. 1977 Oct 19;371(1-2):109–117. doi: 10.1007/BF00580778. [DOI] [PubMed] [Google Scholar]
  21. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]
  22. Tormey J. M., Diamond J. M. The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol. 1967 Sep;50(8):2031–2060. doi: 10.1085/jgp.50.8.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zeuthen T. Intracellular gradients of electrical potential in the epithelial cells of the Necturus gallbladder. J Membr Biol. 1977 May 12;33(3-4):281–309. doi: 10.1007/BF01869521. [DOI] [PubMed] [Google Scholar]
  24. Zeuthen T. Intracellular gradients of ion activities in the epithelial cells of the Necturus gallbladder recorded with ion-selective microelectrodes. J Membr Biol. 1978 Mar 10;39(2-3):185–218. doi: 10.1007/BF01870331. [DOI] [PubMed] [Google Scholar]
  25. van Os C. H., Slegers J. F. The electrical potential profile of gallbladder epithelium. J Membr Biol. 1975 Dec 4;24(3-4):341–363. doi: 10.1007/BF01868631. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES