Abstract
Most of the photoreceptors of the fly compound eye have high sensitivity in the ultraviolet (UV) as well as in the visible spectral range. This UV sensitivity arises from a photostable pigment that acts as a sensitizer for rhodopsin. Because the sensitizing pigment cannot be bleached, the classical determination of the photosensitivity spectrum from measurements of the difference spectrum of the pigment cannot be applied. We therefore used a new method to determine the photosensitivity spectra of rhodopsin and metarhodopsin in the UV spectral range. The method is based on the fact that the invertebrate visual pigment is a bistable one, in which rhodopsin and metarhodopsin are photointerconvertible. The pigment changes were measured by a fast electrical potential, called the M potential, which arises from activation of metarhodopsin. We first established the use of the M potential as a reliable measure of the visual pigment changes in the fly. We then calculated the photosensitivity spectrum of rhodopsin and metarhodopsin by using two kinds of experimentally measured spectra: the relaxation and the photoequilibrium spectra. The relaxation spectrum represents the wavelength dependence of the rate of approach of the pigment molecules to photoequilibrium. This spectrum is the weighted sum of the photosensitivity spectra of rhodopsin and metarhodopsin. The photoequilibrium spectrum measures the fraction of metarhodopsin (or rhodopsin) in photoequilibrium which is reached in the steady state for application of various wavelengths of light. By using this method we found that, although the photosensitivity spectra of rhodopsin and metarhodopsin are very different in the visible, they show strict coincidence in the UV region. This observation indicates that the photostable pigment acts as a sensitizer for both rhodopsin as well as metarhodopsin.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atzmon Z., Hillman P., Hochstein S. Visual response in barnacle photoreceptors is not initiated by transitions to and from metarhodopsin. Nature. 1978 Jul 6;274(5666):74–76. doi: 10.1038/274074a0. [DOI] [PubMed] [Google Scholar]
- Brindley G. S., Gardner-Medwin A. R. The origin of the early receptor potential of the retina. J Physiol. 1966 Jan;182(1):185–194. doi: 10.1113/jphysiol.1966.sp007817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fein A., Cone R. A. Limulus rhodopsin: rapid return of transient intermediates to the thermally stable state. Science. 1973 Nov 2;182(4111):495–497. doi: 10.1126/science.182.4111.495. [DOI] [PubMed] [Google Scholar]
- GOLDSMITH T. H., BARKER R. J., COHEN C. F. SENSITIVITY OF VISUAL RECEPTORS OF CAROTENOID-DEPLETED FLIES: A VITAMIN A DEFICIENCY IN AN INVERTEBRATE. Science. 1964 Oct 2;146(3640):65–67. doi: 10.1126/science.146.3640.65. [DOI] [PubMed] [Google Scholar]
- HUBBARD R., ST GEORGE R. C. The rhodopsin system of the squid. J Gen Physiol. 1958 Jan 20;41(3):501–528. doi: 10.1085/jgp.41.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamdorf K., Schwemer J., Gogala M. Insect visual pigment sensitive to ultraviolet light. Nature. 1971 Jun 18;231(5303):458–459. doi: 10.1038/231458a0. [DOI] [PubMed] [Google Scholar]
- Harris W. A., Stark W. S., Walker J. A. Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol. 1976 Apr;256(2):415–439. doi: 10.1113/jphysiol.1976.sp011331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillman P., Hochstein S., Minke B. Nonlocal interactions in the photoreceptor transduction process. J Gen Physiol. 1976 Aug;68(2):227–245. doi: 10.1085/jgp.68.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochstein S., Minke B., Hillman P., Knight B. W. The kinetics of visual pigment systems. I. Mathematical analysis. Biol Cybern. 1978 Jul 14;30(1):23–32. doi: 10.1007/BF00365480. [DOI] [PubMed] [Google Scholar]
- Horridge G. A., Mimura K. Fly photoreceptors. I. Physical separation of two visual pigments in Calliphora retinula cells 1-6. Proc R Soc Lond B Biol Sci. 1975 Jul 1;190(1099):211–224. doi: 10.1098/rspb.1975.0088. [DOI] [PubMed] [Google Scholar]
- Kirschfeld K., Feiler R., Minke B. The kinetics of formation of metarhodopsin in intact photoreceptors of the fly. Z Naturforsch C. 1978 Nov-Dec;33(11-12):1009–1010. doi: 10.1515/znc-1978-11-1234. [DOI] [PubMed] [Google Scholar]
- Lisman J. E., Sheline Y. Analysis of the rhodopsin cycle in limulus ventral photoreceptors using the early receptor potential. J Gen Physiol. 1976 Nov;68(5):487–501. doi: 10.1085/jgp.68.5.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCann G. D., Arnett D. W. Spectral and polarization sensitivity of the dipteran visual system. J Gen Physiol. 1972 May;59(5):534–558. doi: 10.1085/jgp.59.5.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minke B., Hochstein S., Hillman P. Derivation of a quantitative kinetic model for a visual pigment from observations of early receptor potential. Biophys J. 1974 Jun;14(6):490–512. doi: 10.1016/S0006-3495(74)85929-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minke B., Hochstein S., Hillman P. Early receptor potential evidence for the existence of two thermally stable states in the barnacle visual pigment. J Gen Physiol. 1973 Jul;62(1):87–104. doi: 10.1085/jgp.62.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minke B., Hochstein S., Hillman P. The kinetics of visual pigment systems. II. Application to measurements on a bistable pigment system. Biol Cybern. 1978 Jul 14;30(1):33–43. doi: 10.1007/BF00365481. [DOI] [PubMed] [Google Scholar]
- Minke B., Kirschfeld K. Microspectrophotometric evidence for two photointerconvertible states of visual pigment in the barnacle lateral eye. J Gen Physiol. 1978 Jan;71(1):37–45. doi: 10.1085/jgp.71.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostroy S. E. Rhodopsin and the visual process. Biochim Biophys Acta. 1977 Jun 21;463(1):91–125. doi: 10.1016/0304-4173(77)90004-0. [DOI] [PubMed] [Google Scholar]
- Ostroy S. E., Wilson M., Pak W. L. Drosophila rhodopsin: photochemistry, extraction and differences in the norp AP12 phototransduction mutant. Biochem Biophys Res Commun. 1974 Aug 5;59(3):960–966. doi: 10.1016/s0006-291x(74)80073-2. [DOI] [PubMed] [Google Scholar]
- Pak W. L., Lidington K. J. Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. J Gen Physiol. 1974 Jun;63(6):740–756. doi: 10.1085/jgp.63.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stavenga D. G. Derivation of photochrome absorption spectra from absorbance difference measurements. Photochem Photobiol. 1975 Feb;21(2):105–110. doi: 10.1111/j.1751-1097.1975.tb06636.x. [DOI] [PubMed] [Google Scholar]
- Strong J., Lisman J. Initiation of light adaptation in barnacle photoreceptors. Science. 1978 Jun 30;200(4349):1485–1487. doi: 10.1126/science.663629. [DOI] [PubMed] [Google Scholar]