Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1979 May 1;73(5):605–628. doi: 10.1085/jgp.73.5.605

Mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation

PMCID: PMC2215194  PMID: 222876

Abstract

Electrical stimulation of the chick ciliary nerve leads to a frequency- dependent increase in the Na+-dependent high affinity uptake of [3H]choline (SDHACU) and its conversion to acetylcholine (ACh) in the nerve terminals innervating the iris muscle. The forces that drive this choline (Ch) uptake across the presynaptic membrane were evaluated. Depolarization with increased [K+] out or veratridine decreases Ch accumulation. In addition to the electrical driving force, energy is provided by the Na+ gradient. Inhibition of the Na,K-ATPase decreased the Ch taken up. Thus, changes in the rate of Ch transport are dependent on the electrochemical gradients for both Ch and Na+. Ch uptake and ACh synthesis were increased after a conditioning preincubation with high [K+] out or veratridine. As is the case for electrical stimulation, this acceleration of Ch uptake and ACh synthesis was strongly dependent on the presence of Ca++ in the incubation medium. Na+ influx through a TTX-sensitive channel also contributed to this acceleration. Inasmuch as membrane depolarization reduces the initial velocity of Ch uptake and ACh synthesis, their increases during electrical stimulation therefore cannot be the direct effect of the depolarization phase of the action potential. Instead they are the result of the ionic fluxes accompanying the presynaptic spike. It is concluded that stimulation of Ch uptake and ACh synthesis by nerve activity depends first, on the ACh release elicited by Ca++ influx after depolarization and second, on the activation of the Na,K- ATPase due to Na+ entry. Furthermore, it is suggested that the release of ACh after stimulation drives translocation of cytoplasmic ACh into a protected compartment (probably vesicular). This recompartmentation of intraterminal ACh stimulates ACh synthesis by mass action, allowing further accumulation of Ch.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRKS R. I. THE ROLE OF SODIUM IONS IN THE METABOLISM OF ACETYLCHOLINE. Can J Biochem Physiol. 1963 Dec;41:2573–2597. [PubMed] [Google Scholar]
  2. Baker P. F., Meves H., Ridgway E. B. Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axons. J Physiol. 1973 Jun;231(3):511–526. doi: 10.1113/jphysiol.1973.sp010246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker L. A., Mittag T. W. Comparative studies of substrates and inhibitors of choline transport and choline acetyltransferase. J Pharmacol Exp Ther. 1975 Jan;192(1):86–94. [PubMed] [Google Scholar]
  4. Barker L. A. Modulation of synaptosomal high affinity choline transport. Life Sci. 1976 Apr 1;18(7):725–731. doi: 10.1016/0024-3205(76)90184-3. [DOI] [PubMed] [Google Scholar]
  5. Blaustein M. P., King A. C. Influence of membrane potential on the sodium-dependent uptake of gamma-aminobutyric acid by presynaptic nerve terminals: experimental observations and theoretical considerations. J Membr Biol. 1976 Dec 28;30(2):153–173. doi: 10.1007/BF01869665. [DOI] [PubMed] [Google Scholar]
  6. Brown G. L., Feldberg W. The acetyloholine metabolism of a sympathetic ganglion. J Physiol. 1936 Dec 11;88(3):265–283. doi: 10.1113/jphysiol.1936.sp003439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collier B., Ilson D. The effect of preganglionic nerve stimulation on the accumulation of certain analogues of choline by a sympathetic ganglion. J Physiol. 1977 Jan;264(2):489–509. doi: 10.1113/jphysiol.1977.sp011679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collier B., Katz H. S. Acetylcholine synthesis from recaptured choline by a sympathetic ganglion. J Physiol. 1974 May;238(3):639–655. doi: 10.1113/jphysiol.1974.sp010548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collier B., Lovat S., Ilson D., Barker L. A., Mittag T. W. The uptake, metabolism and release of homocholine: studies with rat brain synaptosomes and cat superior cervical ganglion. J Neurochem. 1977 Feb;28(2):331–339. doi: 10.1111/j.1471-4159.1977.tb07752.x. [DOI] [PubMed] [Google Scholar]
  10. Cotman C. W., Matthews D. A. Synaptic plasma membranes from rat brain synaptosomes: isolation and partial characterization. Biochim Biophys Acta. 1971 Dec 3;249(2):380–394. doi: 10.1016/0005-2736(71)90117-9. [DOI] [PubMed] [Google Scholar]
  11. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glover V. A., Potter L. T. Purification and properties of choline acetyltransferase from ox brain striate nuclei. J Neurochem. 1971 Apr;18(4):571–580. doi: 10.1111/j.1471-4159.1971.tb11987.x. [DOI] [PubMed] [Google Scholar]
  13. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haga T., Noda H. Choline uptake systems of rat brain synaptosomes. Biochim Biophys Acta. 1973 Jan 26;291(2):564–575. doi: 10.1016/0005-2736(73)90508-7. [DOI] [PubMed] [Google Scholar]
  15. Haubrich D. R., Chippendale T. J. Regulation of acetylcholine synthesis in nervous tissue. Life Sci. 1977 May 1;20(9):1465–1478. doi: 10.1016/0024-3205(77)90437-4. [DOI] [PubMed] [Google Scholar]
  16. Ilson D., Collier B., Boksa P. Acetyltriethylcholine: a cholinergic false transmitter in cat superior cervical ganglion and rat cerebral cortex. J Neurochem. 1977 Feb;28(2):371–381. doi: 10.1111/j.1471-4159.1977.tb07757.x. [DOI] [PubMed] [Google Scholar]
  17. Jope R. S., Jenden D. J. Synaptosomal transport and acetylation of choline. Life Sci. 1977 Apr 15;20(8):1389–1392. doi: 10.1016/0024-3205(77)90366-6. [DOI] [PubMed] [Google Scholar]
  18. Kessler R. J., Vande Zande H., Tyson C. A., Blondin G. A., Fairfield J., Glasser P., Green D. E. Uncouplers and the molecular mechanism of uncoupling in mitochondria. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2241–2245. doi: 10.1073/pnas.74.6.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Llinás R., Walton K., Bohr V. Synaptic transmission in squid giant synapse after potassium conductance blockage with external 3- and 4-aminopyridine. Biophys J. 1976 Jan;16(1):83–86. doi: 10.1016/S0006-3495(76)85664-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marchbanks R. M. Exchangeability of radioactive acetylcholine with the bound acetylcholine of synaptosomes and synaptic vesicles. Biochem J. 1968 Jan;106(1):87–95. doi: 10.1042/bj1060087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martin D. L. Kinetics of the sodium-dependent transport of gamma-aminobutyric acid by synaptosomes. J Neurochem. 1973 Aug;21(2):345–356. doi: 10.1111/j.1471-4159.1973.tb04255.x. [DOI] [PubMed] [Google Scholar]
  22. Murrin L. C., Kuhar M. J. Activation of high-affinity choline uptake in vitro by depolarizing agents. Mol Pharmacol. 1976 Nov;12(6):1082–1090. [PubMed] [Google Scholar]
  23. Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
  24. Pieklik J. R., Guynn R. W. Equilibrium constants of the reactions of choline acetyltransferase, carnitine acetyltransferase, and acetylcholinesterase under physiological conditions. J Biol Chem. 1975 Jun 25;250(12):4445–4450. [PubMed] [Google Scholar]
  25. Pilar G., Vaughan P. C. Ultrastructure and contractures of the pigeon iris striated muscle. J Physiol. 1971 Dec;219(2):253–266. doi: 10.1113/jphysiol.1971.sp009660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Potter L. T., Murphy W. Electrophoresis of acetylcholine, choline and related compounds. Biochem Pharmacol. 1967 Jul 7;16(7):1386–1388. doi: 10.1016/0006-2952(67)90174-8. [DOI] [PubMed] [Google Scholar]
  27. Potter L. T. Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J Physiol. 1970 Jan;206(1):145–166. doi: 10.1113/jphysiol.1970.sp009003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rang H. P., Ritchie J. M. On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J Physiol. 1968 May;196(1):183–221. doi: 10.1113/jphysiol.1968.sp008502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
  30. Suszkiw J. B., Pilar G. Selective localization of a high affinity choline uptake system and its role in ACh formation in cholinergic nerve terminals. J Neurochem. 1976 Jun;26(6):1133–1138. doi: 10.1111/j.1471-4159.1976.tb06996.x. [DOI] [PubMed] [Google Scholar]
  31. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]
  32. Ulbricht W. The effect of veratridine on excitable membranes of nerve and muscle. Ergeb Physiol. 1969;61:18–71. doi: 10.1007/BFb0111446. [DOI] [PubMed] [Google Scholar]
  33. Whittaker V. P., Dowdall M. J., Boyne A. F. The storage and release of acetylcholine by cholinergic nerve terminals: recent results with non-mammalian preparations. Biochem Soc Symp. 1972;(36):49–68. [PubMed] [Google Scholar]
  34. Yamamura H. I., Snyder S. H. High affinity transport of choline into synaptosomes of rat brain. J Neurochem. 1973 Dec;21(6):1355–1374. doi: 10.1111/j.1471-4159.1973.tb06022.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES