Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Nov;152(2):747–756. doi: 10.1128/jb.152.2.747-756.1982

Effects of unsaturated fatty acid deprivation on neutral lipid synthesis in Saccharomyces cerevisiae.

T M Buttke, A L Pyle
PMCID: PMC221524  PMID: 6752117

Abstract

The effects of unsaturated fatty acid deprivation on lipid synthesis in Saccharomyces cerevisiae strain GL7 were determined by following the incorporation of [14C]acetate. Compared to yeast cells grown with oleic acid, unsaturated fatty acid-deprived cells contained 200 times as much 14C label in squalene, with correspondingly less label in 2,3-oxidosqualene and 2,3;22,23-dioxidosqualene. Cells deprived of either methionine or cholesterol did not accumulate squalene, demonstrating that the effect of unsaturated fatty acid starvation on squalene oxidation was not due to an inhibition of cell growth. Cells deprived of olefinic supplements displayed additional changes in lipid metabolism: (i) an increase in 14C-labeled diacylglycerides, (ii) a decrease in 14C-labeled triacylglycerides, and (iii) increased levels of 14C-labeled decanoic and dodecanoic fatty acids. The changes in squalene oxidation and acylglyceride metabolism in unsaturated fatty acid-deprived cells were readily reversed by adding oleic acid. Pulse-chase studies demonstrated that the [14C]squalene and 14C-labeled diacylglycerides which accumulated during starvation were further metabolized when cells were resupplemented with oleic acid. These results demonstrate that unsaturated fatty acids are essential for normal lipid metabolism in yeasts.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREASEN A. A., STIER T. J. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol. 1954 Jun;43(3):271–281. doi: 10.1002/jcp.1030430303. [DOI] [PubMed] [Google Scholar]
  2. Buttke T. M., Bloch K. Utilization and metabolism of methyl-sterol derivatives in the yeast mutant strain GL7. Biochemistry. 1981 May 26;20(11):3267–3272. doi: 10.1021/bi00514a044. [DOI] [PubMed] [Google Scholar]
  3. Buttke T. M., Ingram L. O. Inhibition of unsaturated fatty acid synthesis in escherichia coli by the antibiotic cerulenin. Biochemistry. 1978 Nov 28;17(24):5282–5286. doi: 10.1021/bi00617a031. [DOI] [PubMed] [Google Scholar]
  4. Buttke T. M., Jones S. D., Bloch K. Effect of sterol side chains on growth and membrane fatty acid composition of Saccharomyces cerevisiae. J Bacteriol. 1980 Oct;144(1):124–130. doi: 10.1128/jb.144.1.124-130.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buttke T. M., Reynolds R., Pyle A. L. Phospholipid synthesis in S. cerevisiae strain GL7 grown without unsaturated fatty acid supplements. Lipids. 1982 May;17(5):361–366. doi: 10.1007/BF02535195. [DOI] [PubMed] [Google Scholar]
  6. Chang T. Y., Schiavoni E. S., Jr, McCrae K. R., Nelson J. A., Spencer T. A. Inhibition of cholesterol biosynthesis in Chinese hamster ovary cells by 4,4,10 beta-trimethyl-trans-decal-3 beta-ol. A specific 2,3-oxidosqualene cyclase inhibitor. J Biol Chem. 1979 Nov 25;254(22):11258–11263. [PubMed] [Google Scholar]
  7. Christiansen K. Triacylglycerol synthesis in lipid particles from baker's yeast (Saccharomyces cerevisiae). Biochim Biophys Acta. 1978 Jul 25;530(1):78–90. doi: 10.1016/0005-2760(78)90128-5. [DOI] [PubMed] [Google Scholar]
  8. Christiansen K. Utilization of endogenous diacylglycerol for the synthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine by lipid particles from baker's yeast (Saccharomyces cerevisiae). Biochim Biophys Acta. 1979 Sep 28;574(3):448–460. doi: 10.1016/0005-2760(79)90241-8. [DOI] [PubMed] [Google Scholar]
  9. Field R. B., Holmlund C. E. Isolation of 2,3;22,23-dioxidosqualene and 24,25-oxidolanosterol from yeast. Arch Biochem Biophys. 1977 Apr 30;180(2):465–471. doi: 10.1016/0003-9861(77)90061-3. [DOI] [PubMed] [Google Scholar]
  10. Gollub E. G., Liu K. P., Dayan J., Adlersberg M., Sprinson D. B. Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. J Biol Chem. 1977 May 10;252(9):2846–2854. [PubMed] [Google Scholar]
  11. Gordon P. A., Lowdon M. J., Stewart P. R. Effect of unsaturated fatty acids on the development of respiration and on protein synthesis in an unsaturated fatty acid mutant of Saccharomyces cerevisiae. J Bacteriol. 1972 May;110(2):511–515. doi: 10.1128/jb.110.2.511-515.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graff G., Lands W. E. A shift from phospholipid to triglyceride synthesis when cell division is inhibited by trans-fatty acids. Chem Phys Lipids. 1976 Oct;17(2-3):301–314. doi: 10.1016/0009-3084(76)90075-x. [DOI] [PubMed] [Google Scholar]
  13. Haslam J. M., Fellows N. F. The effects of unsaturated fatty acid depletion on the proton permeability and energetic functions of yeast mitochondria. Biochem J. 1977 Sep 15;166(3):565–570. doi: 10.1042/bj1660565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haslam J. M., Proudlock J. W., Linnane A. W. Biogenesis of mitochondria. 20. The effects of altered membrane lipid composition on mitochondrial oxidative phosphorylation in Saccharomyces cerevisiae. J Bioenerg. 1971 Dec;2(5):351–370. doi: 10.1007/BF01963830. [DOI] [PubMed] [Google Scholar]
  15. Henry S. A. Death resulting from fatty acid starvation in yeast. J Bacteriol. 1973 Dec;116(3):1293–1303. doi: 10.1128/jb.116.3.1293-1303.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johannsson A., Keightley C. A., Smith G. A., Richards C. D., Hesketh T. R., Metcalfe J. C. The effect of bilayer thickness and n-alkanes on the activity of the (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum. J Biol Chem. 1981 Feb 25;256(4):1643–1650. [PubMed] [Google Scholar]
  17. KLEIN H. P. Synthesis of lipids in resting cells of Saccharomyces cerevisiae. J Bacteriol. 1955 Jun;69(6):620–627. doi: 10.1128/jb.69.6.620-627.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LIGHT R. J., LENNARZ W. J., BLOCH K. The metabolism of hydroxystearic acids in yeast. J Biol Chem. 1962 Jun;237:1793–1800. [PubMed] [Google Scholar]
  19. Lanyi J. K., Plachy W. Z., Kates M. Lipid interactions in membranes of extremely halophilic bacteria. II. Modification of the bilayer structure by squalene. Biochemistry. 1974 Nov 19;13(24):4914–4920. doi: 10.1021/bi00721a006. [DOI] [PubMed] [Google Scholar]
  20. MEYER F., BLOCH K. METABOLISM OF STEAROLIC ACID IN YEAST. J Biol Chem. 1963 Aug;238:2654–2659. [PubMed] [Google Scholar]
  21. Marzuki S., Linnane A. W. Modification of yeast mitochondria by diet in specific mutants. Methods Enzymol. 1979;56:568–577. doi: 10.1016/0076-6879(79)56055-8. [DOI] [PubMed] [Google Scholar]
  22. Proudlock J. W., Haslam J. M., Linnane A. W. Biogenesis of mitochondria. 19. The effects of unsaturated fatty acid depletion on the lipid composition and energy metabolism of a fatty acid desaturase mutant of Saccharomyces cerevisiae. J Bioenerg. 1971 Dec;2(5):327–349. doi: 10.1007/BF01963829. [DOI] [PubMed] [Google Scholar]
  23. Rattray J. B., Schibeci A., Kidby D. K. Lipids of yeasts. Bacteriol Rev. 1975 Sep;39(3):197–231. doi: 10.1128/br.39.3.197-231.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Taylor F. R., Parks L. W. Triaglycerol metabolism in Saccharomyces cerevisiae. Relation to phospholipid synthesis. Biochim Biophys Acta. 1979 Nov 21;575(2):204–214. doi: 10.1016/0005-2760(79)90022-5. [DOI] [PubMed] [Google Scholar]
  25. Walenga R. W., Lands W. E. Requirements for unsaturated fatty acids for the induction on respiration in Saccharomyces cerevisiae. J Biol Chem. 1975 Dec 10;250(23):9130–9136. [PubMed] [Google Scholar]
  26. Wallace P. G., Huang M., Linnane A. W. The biogenesis of mitochondria. II. The influence of medium composition on the cytology of anaerobically grown Saccharomyces cerevisiae. J Cell Biol. 1968 May;37(2):207–220. doi: 10.1083/jcb.37.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wisnieski B. J., Keith A. D., Resnick M. R. Double-bond requirement in a fatty acid desaturase mutant of Saccharomyces cerevisiae. J Bacteriol. 1970 Jan;101(1):160–165. doi: 10.1128/jb.101.1.160-165.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wisnieski B. J., Kiyomoto R. K. Fatty acid desaturase mutants of yeast: growth requirements and electron spin resonance spin-label distribution. J Bacteriol. 1972 Jan;109(1):186–195. doi: 10.1128/jb.109.1.186-195.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES