Abstract
The electrical properties of the proximal tubule of the in vivo Necturus kidney were investigated by injecting current (as rectangular waves) into the lumen or into the epithelium of single tubules and by studying the resulting changes of transepithelial (VL) and/or cell membrane potential (VC) at various distances from the source. In some experiments paired measurements of VL and VC were performed at two abscissas x and x'. The luminal length constant of about 1,030 micrometer was shown to provide a good estimate of the transepithelial resistance, specific resistance (RTE = 420 omega.cm2) and/or per unit length (rTE = 1.3 x 10(4) omega.cm). The apparent intraepithelial length constant was subject to distortions arising from concomitant current spread in the lumen. The resistances of luminal membrane (rL), basolateral membrane (rB), and shunt pathway (rS) were estimated by two independent methods at 3.5 x 10(4), 1.2 x 10(4), and 1.7 x 10(4) omega.cm, respectively. The corresponding specific resistances were close to 1,200, 600, and 600 omega.cm2. There are two main conclusions of this study. (a) The resistances of cell membranes and shunt pathway are of the same order of magnitude. The figure of the shunt resistance is at variance with the notion that the proximal tubule of Necturus is a leaky epithelium. (b) A rigorous assessment of the conductive properties of concentric cylindrical double cables (such as renal tubules) requires that electrical interactions arising from one cable to another be taken into account. Appropriate equations were developed to deal with this problem.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anagnostopoulos T. Anion permeation in the proximal tubule of Necturus kidney: the shunt pathway. J Membr Biol. 1975 Dec 4;24(3-4):365–380. doi: 10.1007/BF01868632. [DOI] [PubMed] [Google Scholar]
- Anagnostopoulos T. Biionic potentials in the proximal tubule of Necturus kidney. J Physiol. 1973 Sep;233(2):375–394. doi: 10.1113/jphysiol.1973.sp010313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anagnostopoulos T., Velu E. Electrical resistance of cell membranes in Necturus kidney. Pflugers Arch. 1974;346(4):327–339. doi: 10.1007/BF00596188. [DOI] [PubMed] [Google Scholar]
- Bentzel C. J., Anagnostopoulos T., Pandit H. Necturus kidney: its response to effects of isotonic volume expansion. Am J Physiol. 1970 Jan;218(1):205–213. doi: 10.1152/ajplegacy.1970.218.1.205. [DOI] [PubMed] [Google Scholar]
- Bentzel C. J. Proximal tubule structure-function relationships during volume expansion in necturus. Kidney Int. 1972 Dec;2(6):324–335. doi: 10.1038/ki.1972.116. [DOI] [PubMed] [Google Scholar]
- Boulpaep E. L. Electrical phenomena in the nephron. Kidney Int. 1976 Feb;9(2):88–102. doi: 10.1038/ki.1976.14. [DOI] [PubMed] [Google Scholar]
- Boulpaep E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am J Physiol. 1972 Mar;222(3):517–531. doi: 10.1152/ajplegacy.1972.222.3.517. [DOI] [PubMed] [Google Scholar]
- Burg M. B., Green N. Function of the thick ascending limb of Henle's loop. Am J Physiol. 1973 Mar;224(3):659–668. doi: 10.1152/ajplegacy.1973.224.3.659. [DOI] [PubMed] [Google Scholar]
- Candia O. A., Bentley P. J., Cook P. I. Stimulation by amphotericin B of active Na transport across amphibian cornea. Am J Physiol. 1974 Jun;226(6):1438–1444. doi: 10.1152/ajplegacy.1974.226.6.1438. [DOI] [PubMed] [Google Scholar]
- Degnan K. J., Karnaky K. J., Jr, Zadunaisky J. A. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. J Physiol. 1977 Sep;271(1):155–191. doi: 10.1113/jphysiol.1977.sp011995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelman A., Anagnostopoulos T. Further studies on ion permeation in proximal tubule of necturus kidney. Am J Physiol. 1978 Aug;235(2):F89–F95. doi: 10.1152/ajprenal.1978.235.2.F89. [DOI] [PubMed] [Google Scholar]
- Edelman A., Anagnostopoulos T. Transepithelial potential difference in the proximal tubule of necturus kidney. Pflugers Arch. 1976 May 12;363(2):105–111. doi: 10.1007/BF01062277. [DOI] [PubMed] [Google Scholar]
- Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972 Jan 5;235(53):9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
- Gertz K. H., Mangos J. A., Braun G., Pagel H. D. On the glomerular tubular balance in the rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Sep 15;285(4):360–372. doi: 10.1007/BF00363236. [DOI] [PubMed] [Google Scholar]
- Grandchamp A., Boulpaep E. L. Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubule. J Clin Invest. 1974 Jul;54(1):69–82. doi: 10.1172/JCI107751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helman S. I., O'Neil R. G. Model of active transepithelial Na and K transport of renal collecting tubules. Am J Physiol. 1977 Dec;233(6):F559–F571. doi: 10.1152/ajprenal.1977.233.6.F559. [DOI] [PubMed] [Google Scholar]
- Lutz M. D., Cardinal J., Burg M. B. Electrical resistance of renal proximal tubule perfused in vitro. Am J Physiol. 1973 Sep;225(3):729–734. doi: 10.1152/ajplegacy.1973.225.3.729. [DOI] [PubMed] [Google Scholar]
- Nellans H. N., Frizzell R. A., Schultz S. G. Effect of acetazolamide on sodium and chloride transport by in vitro rabbit ileum. Am J Physiol. 1975 Jun;228(6):1808–1814. doi: 10.1152/ajplegacy.1975.228.6.1808. [DOI] [PubMed] [Google Scholar]
- Schultz S. G., Frizzell R. A., Nellans H. N. Active sodium transport and the electrophysiology of rabbit colon. J Membr Biol. 1977 May 12;33(3-4):351–384. doi: 10.1007/BF01869524. [DOI] [PubMed] [Google Scholar]
- Shiba H. Heaviside's "Bessel cable" as an electric model for flat simple epithelial cells with low resistive junctional membranes. J Theor Biol. 1971 Jan;30(1):59–68. doi: 10.1016/0022-5193(71)90036-1. [DOI] [PubMed] [Google Scholar]
- Spring K. R. Current-induced voltage transients in Necturus proximal tubule. J Membr Biol. 1973 Nov 8;13(4):299–322. doi: 10.1007/BF01868234. [DOI] [PubMed] [Google Scholar]
- Spring K. R., Paganelli C. V. Sodium flux in Necturus proximal tubule under voltage clamp. J Gen Physiol. 1972 Aug;60(2):181–201. doi: 10.1085/jgp.60.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
