Abstract
Effects of previous activity on the ability of frog skeletal muscle at 0 degrees C to liberate energy associated with contractile activation, i.e., activation heat (AH), have been examined. Earlier work suggests that activation heat amplitude (as measured from muscles stretched to lengths where active force development is nearly abolished) is related to the amount of Ca2+ released upon stimulation. After a twitch, greater than 2 s is required before a second stimulus (AHt) can liberate the same activation heat as a first stimulus (AH infinity), i.e., (AHt)/(AH infinity) = 1 -0.83 e-1.40t, where t is time in seconds. Caffeine introduces a time delay in the recovery of the ability to generate activation heat after a twitch. After a tetanus, the activation heat is depressed to a greater extent at any time than after a twitch. The activation heat elicited by a stimulus 1 s after a tetanus is depressed progressively with respect to tetanus duration up to 3 s. For tetani of 3, 40, and 80 s duration the postetanus activation heat is comparably depressed. The time-course of the recovery of the ability of the muscle to produce activation heat after a tetanus can be described as (AHt)/(AH infinity) = 1 -0.80 e-0.95t - 0.20 e-0.02t. Greater than 90 s is required before the posttetanus activation heat is equal to the pretetanus value. The faster phase of recovery is similar to recovery after the twitch and the slower phase may be associated with the return of calcium to the terminal cisternae from uptake sites in the longitudinal sarcoplasmic reticulum.
Full Text
The Full Text of this article is available as a PDF (846.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blinks J. R., Rüdel R., Taylor S. R. Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin. J Physiol. 1978 Apr;277:291–323. doi: 10.1113/jphysiol.1978.sp012273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connolly R., Gough W., Winegrad S. Characteristics of the isometric twitch of skeletal muscle immediately after a tetanus. A study of the influence of the distribution of calcium within the sarcoplasmic reticulum on the twitch. J Gen Physiol. 1971 Jun;57(6):697–709. [PubMed] [Google Scholar]
- HILL A. V., WOLEDGE R. C. An examination of absolute values in myothermic measurements. J Physiol. 1962 Jul;162:311–333. doi: 10.1113/jphysiol.1962.sp006935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homsher E., Mommaerts W. F., Ricchiuti N. V., Wallner A. Activation heat, activation metabolism and tension-related heat in frog semitendinosus muscles. J Physiol. 1972 Feb;220(3):601–625. doi: 10.1113/jphysiol.1972.sp009725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner G. Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1975 Apr 21;389(1):51–68. doi: 10.1016/0005-2736(75)90385-5. [DOI] [PubMed] [Google Scholar]
- Oetliker H., Schümperli R. A. Birefringence signals and tension development in single frog muscle fibres at short stimulus intervals. Experientia. 1979 Apr 15;35(4):496–498. doi: 10.1007/BF01922728. [DOI] [PubMed] [Google Scholar]
- Rall J. A. Effects of temperature on tension, tension-dependent heat, and activation heat in twitches of frog skeletal muscle. J Physiol. 1979 Jun;291:265–275. doi: 10.1113/jphysiol.1979.sp012811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SANDOW A., TAYLOR S. R., ISAASON A., SEGUIN J. J. ELECTROCHEMICAL COUPLING IN POTENTIATION OF MUSCULAR CONTRACTION. Science. 1964 Feb 7;143(3606):577–579. doi: 10.1126/science.143.3606.577. [DOI] [PubMed] [Google Scholar]
- Smith I. C. Energetics of activation in frog and toad muscle. J Physiol. 1972 Feb;220(3):583–599. doi: 10.1113/jphysiol.1972.sp009724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suarez-Kurtz G., Parker I. Birefringence signals and calcium transients in skeletal muscle. Nature. 1977 Dec 22;270(5639):746–748. doi: 10.1038/270746a0. [DOI] [PubMed] [Google Scholar]
- Weber A., Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol. 1968 Nov;52(5):750–759. doi: 10.1085/jgp.52.5.750. [DOI] [PMC free article] [PubMed] [Google Scholar]