Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 Jun 1;69(6):725–741. doi: 10.1085/jgp.69.6.725

Metabolism of acetylcholine in the nervous system of Aplysia californica. IV. Studies of an identified cholinergic axon

PMCID: PMC2215331  PMID: 894241

Abstract

[3H]Choline, injected directly into the major axon of the identified cholinergic neuron R2, was readily incorporated into [3H]acetylcholine. Its metabolic fate was similar to that of [3H]choline injected into the cell body of R2. Over the range injected, we found that the amounts of acetylcholine formed were proportional to the amounts injected; the synthetic capability was not exceeded even when 88 pmol of [3H]choline were injected into the axon. Newly synthesized acetylcholine moved within the axon with the kinetics expected of diffusion. We could not detect any selective orthograde or retrograde transport from the site of the injection. In contrast, as indicated by experiments with colchicine, 30% of the [3H]acetylcholine formed after intrasomatic injection was selectively exported from the cell body and transported along the axon. Most of the [3H]acetylcholine was recovered in the soluble fraction after both intra-axonal and intrasomatic injection of [3H]choline; only a small fraction was particulate. The significance of large amounts of soluble acetylcholine in R2 is uncertain, and some may occur physiologically. The concentrations of choline introduced by intraneuronal injection into both cell body and axon were, however, greater than those normally available to choline acetyltransferase in the cholinergic neuron; nevertheless, these large concentrations were efficiently converted into the transmitter. The synthetic capacity of the neuron supplied with injected choline may exceed the capacity of storage vesicles and of the axonal transport process.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coggeshall R. E. A light and electron microscope study of the abdominal ganglion of Aplysia californica. J Neurophysiol. 1967 Nov;30(6):1263–1287. doi: 10.1152/jn.1967.30.6.1263. [DOI] [PubMed] [Google Scholar]
  2. Collier B. The preferential release of newly synthesized transmitter by a sympathetic ganglion. J Physiol. 1969 Nov;205(2):341–352. doi: 10.1113/jphysiol.1969.sp008969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DEL CASTILLO J., KATZ B. Local activity at a depolarized nerve-muscle junction. J Physiol. 1955 May 27;128(2):396–411. doi: 10.1113/jphysiol.1955.sp005315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dahlström A. Axoplasmic transport (with particular respect to adrenergic neurons). Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):325–358. doi: 10.1098/rstb.1971.0064. [DOI] [PubMed] [Google Scholar]
  5. Eisenstadt M. L., Schwartz J. H. Metabolism of acetylcholine in the nervous system of Aplysia californica. III. Studies of an indentified cholinergic neuron. J Gen Physiol. 1975 Mar;65(3):293–213. doi: 10.1085/jgp.65.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenstadt M. L., Treistman S. N., Schwartz J. H. Metabolism of acetylcholine in the nervous system of Aplysia californica. II. Reginal localization and characterization of choline uptake. J Gen Physiol. 1975 Mar;65(3):275–291. doi: 10.1085/jgp.65.3.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eisenstadt M., Goldman J. E., Kandel E. R., Koike H., Koester J., Schwartz J. H. Intrasomatic injection of radioactive precursors for studying transmitter synthesis in identified neurons of Aplysia californica. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3371–3375. doi: 10.1073/pnas.70.12.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evans C. A., Saunders N. R. An outflow of acetylcholine from normal and regenerating ventral roots of the cat. J Physiol. 1974 Jul;240(1):15–32. doi: 10.1113/jphysiol.1974.sp010596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fonnum F., Frizell M., Sjöstrand J. Transport, turnover and distribution of choline acetyltransferase and acetylcholinesterase in the vagus and hypoglossal nerves of the rabbit. J Neurochem. 1973 Nov;21(5):1109–1120. doi: 10.1111/j.1471-4159.1973.tb07565.x. [DOI] [PubMed] [Google Scholar]
  10. Giller E., Jr, Schwartz J. H. Choline acetyltransferase in identified neurons of abdominal ganglion of Aplysia californica. J Neurophysiol. 1971 Jan;34(1):93–107. doi: 10.1152/jn.1971.34.1.93. [DOI] [PubMed] [Google Scholar]
  11. Goldman J. E., Kim K. S., Schwartz J. H. Axonal transport of [3H]serotonin in an identified neuron of Aplysia californica. J Cell Biol. 1976 Aug;70(2 Pt 1):304–318. doi: 10.1083/jcb.70.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hebb C. Biosynthesis of acetylcholine in nervous tissue. Physiol Rev. 1972 Oct;52(4):918–957. doi: 10.1152/physrev.1972.52.4.918. [DOI] [PubMed] [Google Scholar]
  13. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Highstein S. M., Bennett M. V. Fatigue and recovery of transmission at the Mauthner fiber-giant fiber synapse of the hatchetfish. Brain Res. 1975 Nov 14;98(2):229–242. doi: 10.1016/0006-8993(75)90003-7. [DOI] [PubMed] [Google Scholar]
  15. Hildebrand J. G., Townsel J. G., Kravitz E. A. Distribution of acetylcholine, choline, choline acetyltransferase and acetylcholinesterase in regions and single identified axons of the lobster nervous system. J Neurochem. 1974 Nov;23(5):951–963. doi: 10.1111/j.1471-4159.1974.tb10747.x. [DOI] [PubMed] [Google Scholar]
  16. Israël M., Gautron J., Lesbats B. Fractionnement de l'organe electrique de la torpille: localisation subcellulaire de l'acetylcholine. J Neurochem. 1970 Oct;17(10):1441–1450. doi: 10.1111/j.1471-4159.1970.tb00511.x. [DOI] [PubMed] [Google Scholar]
  17. KRAVITZ E. A., POTTER D. D. A FURTHER STUDY OF THE DISTRIBUTION OF GAMMA-AMINOBUTYRIC ACID BETWEEN EXCITATORY AND INHIBITORY AXONS OF THE LOBSTER. J Neurochem. 1965 Apr;12:323–328. doi: 10.1111/j.1471-4159.1965.tb06768.x. [DOI] [PubMed] [Google Scholar]
  18. Koike H., Dandel E. R., Schwartz J. H. Synaptic release of radioactivity after intrasomatic injection of choline-3H into an identified cholinergic interneuron in abdominal ganglion of Aplysia californica. J Neurophysiol. 1974 Jul;37(4):815–827. doi: 10.1152/jn.1974.37.4.815. [DOI] [PubMed] [Google Scholar]
  19. Koike H., Eisenstadt M., Schwartz J. H. Axonal transport of newly synthesized acetylcholine in an identified neuron of Aplysia. Brain Res. 1972 Feb 11;37(1):152–159. doi: 10.1016/0006-8993(72)90359-9. [DOI] [PubMed] [Google Scholar]
  20. McCaman M. W., McCaman R. E., Lees G. J. Liquid cation exchange--a basis for sensitive radiometric assays for aromatic amino acid decarboxylases. Anal Biochem. 1972 Jan;45(1):242–252. doi: 10.1016/0003-2697(72)90024-3. [DOI] [PubMed] [Google Scholar]
  21. McCaman R. E., Weinreich D., Borys H. Endogenous levels of acetylcholine and choline in individual neurons of Aplysia. J Neurochem. 1973 Aug;21(2):473–476. doi: 10.1111/j.1471-4159.1973.tb04267.x. [DOI] [PubMed] [Google Scholar]
  22. McLachlan E. M. Electrophysiological evidence for the second store of ACh in preganglionic nerve terminals. Brain Res. 1975 Nov 14;98(2):373–376. doi: 10.1016/0006-8993(75)90017-7. [DOI] [PubMed] [Google Scholar]
  23. Osbone N. N., Cottrell G. A. Amine and amino acid microanalysis of two identified snail neurons with known characteristics. Experientia. 1972 Jun 15;28(6):656–658. doi: 10.1007/BF01944960. [DOI] [PubMed] [Google Scholar]
  24. Otsuka M., Kravitz E. A., Potter D. D. Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate. J Neurophysiol. 1967 Jul;30(4):725–752. doi: 10.1152/jn.1967.30.4.725. [DOI] [PubMed] [Google Scholar]
  25. Powell B., Cottrell G. A. Dopamine in an identified neuron of Planorbus corneus. J Neurochem. 1974 Apr;22(4):605–606. doi: 10.1111/j.1471-4159.1974.tb06902.x. [DOI] [PubMed] [Google Scholar]
  26. Schwartz J. H., Castellucci V. F., Kandel E. R. Functioning of identified neurons and synapses in abdominal ganglion of Aplysia in absence of protein synthesis. J Neurophysiol. 1971 Nov;34(6):939–953. doi: 10.1152/jn.1971.34.6.939. [DOI] [PubMed] [Google Scholar]
  27. Schwartz J. H., Eisenstadt M. L., Cedar H. Metabolism of acetylcholine in the nervous system of Aplysia californica. I. Source of choline and its uptake by intact nervous tissue. J Gen Physiol. 1975 Mar;65(3):255–273. doi: 10.1085/jgp.65.3.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simon J. R., Atweh S., Kuhar M. J. Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J Neurochem. 1976 May;26(5):909–922. doi: 10.1111/j.1471-4159.1976.tb06472.x. [DOI] [PubMed] [Google Scholar]
  29. Suszkiw J. B., Beach R. L., Pilar G. R. Choline uptake by cholinergic neuron cell somas. J Neurochem. 1976 Jun;26(6):1123–1131. doi: 10.1111/j.1471-4159.1976.tb06995.x. [DOI] [PubMed] [Google Scholar]
  30. Suszkiw J. B., Pilar G. Selective localization of a high affinity choline uptake system and its role in ACh formation in cholinergic nerve terminals. J Neurochem. 1976 Jun;26(6):1133–1138. doi: 10.1111/j.1471-4159.1976.tb06996.x. [DOI] [PubMed] [Google Scholar]
  31. Tauc L., Hoffmann A., Tsuji S., Hinzen D. H., Faille L. Transmission abolished on a cholinergic synapse after injection of acetylcholinesterase into the presynaptic neurone. Nature. 1974 Aug 9;250(5466):496–498. doi: 10.1038/250496a0. [DOI] [PubMed] [Google Scholar]
  32. Thompson E. B., Schwartz J. H., Kandel E. R. A radioautographic analysis in the light and electron microscope of identified Aplysia neurons and their processes after intrasomatic injection of L-(3H)fucose. Brain Res. 1976 Aug 13;112(2):251–281. doi: 10.1016/0006-8993(76)90283-3. [DOI] [PubMed] [Google Scholar]
  33. Toru M., Aprison M. H. Brain acetylcholine studies: a new extraction procedure. J Neurochem. 1966 Dec;13(12):1533–1544. doi: 10.1111/j.1471-4159.1966.tb04318.x. [DOI] [PubMed] [Google Scholar]
  34. Treistman S. N., Schwartz J. H. Injection of radioactive materials into an identified axon of Aplysia. Brain Res. 1974 Mar 22;68(2):358–364. doi: 10.1016/0006-8993(74)90405-3. [DOI] [PubMed] [Google Scholar]
  35. Tucek S. Transport of choline acetyltransferase and acetylcholinesterase in the central stump and isolated segments of a peripheral nerve. Brain Res. 1975 Mar 21;86(2):259–270. doi: 10.1016/0006-8993(75)90701-5. [DOI] [PubMed] [Google Scholar]
  36. Weinreich D., McCaman M. W., McCaman R. E., Vaughn J. E. Chemical, enzymatic and ultrastructural characterization of 5-hydroxytryptamine-containing neurons from the ganglia of Aplysia californica and Tritionia diomedia. J Neurochem. 1973 Apr;20(4):969–976. doi: 10.1111/j.1471-4159.1973.tb00067.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES