Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 Jun 1;69(6):815–848. doi: 10.1085/jgp.69.6.815

Repetitive firing: a quantitative study of feedback in model encoders

PMCID: PMC2215332  PMID: 894244

Abstract

Recognition of nonlinearities in the neuronal encoding of repetitive spike trains has generated a number of models to explain this behavior. Here we develop the mathematics and a set of tests for two such models: the leaky integrator and the variable-gamma model. Both of these are nearly sufficient to explain the dynamic behavior of a number of repetitively firing, sensory neurons. Model parameters can be related to possible underlying basic mechanisms. Summed and nonsummed, spike- locked negative feedback are examined in conjunction with the models. Transfer functions are formulated to predict responses to steady state, steps, and sinusoidally varying stimuli in which output data are the times of spike-train events only. An electrical analog model for the leaky integrator is tested to verify predicted responses. Curve fitting and parameter variation techniques are explored for the purpose of extracting basic model parameters from spike train data. Sinusoidal analysis of spike trains appear to be a very accurate method for determining spike-locked feedback parameters, and it is to a large extent a model independent method that may also be applied to neuronal responses.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbi M., Carelli V., Frediani C., Petracchi D. The self-inhibited leaky integrator: transfer functions and steady state relations. Biol Cybern. 1975 Oct 1;20(1):51–59. doi: 10.1007/BF00350999. [DOI] [PubMed] [Google Scholar]
  2. Fohlmeister J. F. A model for phasic and tonic repetitively firing neuronal encoders. Kybernetik. 1973 Sep;13(2):104–112. doi: 10.1007/BF00288789. [DOI] [PubMed] [Google Scholar]
  3. Fohlmeister J. F., Poppele R. E., Purple R. L. Repetitive firing: dynamic behavior of sensory neurons reconciled with a quantitative model. J Neurophysiol. 1974 Nov;37(6):1213–1227. doi: 10.1152/jn.1974.37.6.1213. [DOI] [PubMed] [Google Scholar]
  4. Fohlmeister J. F., Poppele R. E., Purple R. L. Repetitive firing: quantitative analysis of encoder behavior of slowly adapting stretch receptor of crayfish and eccentric cell of Limulus. J Gen Physiol. 1977 Jun;69(6):849–877. doi: 10.1085/jgp.69.6.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. French A. S., Stein R. B. A flexible neural analog using integrated circuits. IEEE Trans Biomed Eng. 1970 Jul;17(3):248–253. doi: 10.1109/tbme.1970.4502739. [DOI] [PubMed] [Google Scholar]
  6. Kernell D., Sjöholm H. Motoneurone models based on 'voltage clamp equations' for peripheral nerve. Acta Physiol Scand. 1972 Dec;86(4):546–562. doi: 10.1111/j.1748-1716.1972.tb05356.x. [DOI] [PubMed] [Google Scholar]
  7. Kernell D., Sjöholm H. Repetitive impulse firing: comparisons between neurone models based on 'voltage clamp equations' and spinal motoneurones. Acta Physiol Scand. 1973 Jan;87(1):40–56. doi: 10.1111/j.1748-1716.1973.tb05364.x. [DOI] [PubMed] [Google Scholar]
  8. Kernell D. The repetitive impulse discharge of a simple neurone model compared to that of spinal motoneurones. Brain Res. 1968 Dec;11(3):685–687. doi: 10.1016/0006-8993(68)90157-1. [DOI] [PubMed] [Google Scholar]
  9. Knight B. W. Dynamics of encoding in a population of neurons. J Gen Physiol. 1972 Jun;59(6):734–766. doi: 10.1085/jgp.59.6.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knox C. K. Signal transmission in random spike trains with applications to the statocyst neurons of the lobster. Kybernetik. 1970 Nov;7(5):167–174. doi: 10.1007/BF00289403. [DOI] [PubMed] [Google Scholar]
  11. Matthews P. B., Stein R. B. The sensitivity of muscle spindle afferents to small sinusoidal changes of length. J Physiol. 1969 Feb;200(3):723–743. doi: 10.1113/jphysiol.1969.sp008719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McKean T. A., Poppele R. E., Rosenthal N. P., Terzuolo C. A. The biologically relevant parameter in nerve impulse trains. Kybernetik. 1970 Jan;6(5):168–170. doi: 10.1007/BF00273961. [DOI] [PubMed] [Google Scholar]
  13. Michaelis B., Chaplain R. A. The encoder mechanism of receptor neurons. Kybernetik. 1973 Jul;13(1):6–23. doi: 10.1007/BF00289106. [DOI] [PubMed] [Google Scholar]
  14. Poppele R. E., Bowman R. J. Quantitative description of linear behavior of mammalian muscle spindles. J Neurophysiol. 1970 Jan;33(1):59–72. doi: 10.1152/jn.1970.33.1.59. [DOI] [PubMed] [Google Scholar]
  15. Poppele R. E., Chen W. J. Repetitive firing behavior of mammalian muscle spindle. J Neurophysiol. 1972 May;35(3):357–364. doi: 10.1152/jn.1972.35.3.357. [DOI] [PubMed] [Google Scholar]
  16. Ratliff F., Knight B. W., Graham N. On tuning and amplification by lateral inhibition. Proc Natl Acad Sci U S A. 1969 Mar;62(3):733–740. doi: 10.1073/pnas.62.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rescigno A., Stein R. B., Purple R. L., Poppele R. E. A neuronal model for the discharge patterns produced by cyclic inputs. Bull Math Biophys. 1970 Sep;32(3):337–353. doi: 10.1007/BF02476873. [DOI] [PubMed] [Google Scholar]
  18. Sokolove P. G., Cooke I. M. Inhibition of impulse activity in a sensory neuron by an electrogenic pump. J Gen Physiol. 1971 Feb;57(2):125–163. doi: 10.1085/jgp.57.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. TERZUOLO C. A., WASHIZU Y. Relation between stimulus strength, generator potential and impulse frequency in stretch receptor of Crustacea. J Neurophysiol. 1962 Jan;25:56–66. doi: 10.1152/jn.1962.25.1.56. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES