Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 Jun 1;69(6):879–896. doi: 10.1085/jgp.69.6.879

On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids

PT Palade, RL Barchi
PMCID: PMC2215335  PMID: 894246

Abstract

25 aromatic carboxylic acids which are analogs of benzoic acid were tested in the rat diaphragm preparation for effects on chloride conductance (G(Cl)). Of the 25, 19 were shown to reduce membrane G(Cl) with little effect on other membrane parameters, although their apparent K(i) varied widely. This inhibition was reversible if exposure times were not prolonged. The most effective analog studied was anthracene-9-COOH (9-AC; K(i) = 1.1 x 10(-5) M). Active analogs produced concentration-dependent inhibition of a type consistent with interaction at a single site or group of sites having similar binding affinities, although a correlation could also be shown between lipophilicity and K(i). Structure-activity analysis indicated that hydrophobic ring substitution usually increased inhibitory activity while para polar substitutions reduced effectiveness.

These compounds do not appear to inhibit G(Cl) by altering membrane surface charge and the inhibition produced is not voltage dependent. Qualitative characteristics of the I-V relationship for Cl(-) current are not altered. Conductance to all anions is not uniformly altered by these acids as would be expected from steric occlusion of a common channel. Concentrations of 9-AC reducing G(Cl) by more than 90 percent resulted in slight augmentation of G(I). The complete conductance sequence obtained at high levels of 9-AC was the reverse of that obtained under control conditions. Permeability sequences underwent progressive changes with increasing 9-AC concentration and ultimately inverted at high levels of the analog. Aromatic carboxylic acids appear to inhibit G(Cl) by binding to a specific intramembrane site and altering the selectivity sequence of the membrane anion channel.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. Internal chloride concentration and chloride efflux of frog muscle. J Physiol. 1961 May;156:623–632. doi: 10.1113/jphysiol.1961.sp006698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian R. H., Bryant S. H. On the repetitive discharge in myotonic muscle fibres. J Physiol. 1974 Jul;240(2):505–515. doi: 10.1113/jphysiol.1974.sp010620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adrian R. H., Marshall M. W. Action potentials reconstructed in normal and myotonic muscle fibres. J Physiol. 1976 Jun;258(1):125–143. doi: 10.1113/jphysiol.1976.sp011410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BANGHAM A. D., HEARD D. H., FLEMANS R., SEAMAN G. V. An apparatus for microelectrophoresis of small particles. Nature. 1958 Sep 6;182(4636):642–644. doi: 10.1038/182642a0. [DOI] [PubMed] [Google Scholar]
  5. Barchi R. L. Myotonia. An evaluation of the chloride hypothesis. Arch Neurol. 1975 Mar;32(3):175–180. doi: 10.1001/archneur.1975.00490450055007. [DOI] [PubMed] [Google Scholar]
  6. Barker J. L., Levitan H. Mitochondrial uncoupling agents. Effects on membrane permeability of molluscan neurons. J Membr Biol. 1975;25(3-4):361–380. doi: 10.1007/BF01868584. [DOI] [PubMed] [Google Scholar]
  7. Bryant S. H. Cable properties of external intercostal muscle fibres from myotonic and nonmyotonic goats. J Physiol. 1969 Oct;204(3):539–550. doi: 10.1113/jphysiol.1969.sp008930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bryant S. H., Morales-Aguilera A. Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J Physiol. 1971 Dec;219(2):367–383. doi: 10.1113/jphysiol.1971.sp009667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. D'Arrigo J. S. Axonal surface charges: binding or screening by divalent cations governed by external pH. J Physiol. 1974 Dec;243(3):757–764. doi: 10.1113/jphysiol.1974.sp010775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. D'Arrigo J. S. Possible screening of surface charges on crayfish axons by polyvalent metal ions. J Physiol. 1973 May;231(1):117–128. doi: 10.1113/jphysiol.1973.sp010223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. EDSON E. F., SANDERSON D. M. TOXICITIES AND MYOTONIC ACTIVITIES OF CERTAIN POLYCHLOROBENZOIC ACIDS. Biochem Pharmacol. 1964 Nov;13:1538–1539. doi: 10.1016/0006-2952(64)90206-0. [DOI] [PubMed] [Google Scholar]
  12. EISENMAN G. Cation selective glass electrodes and their mode of operation. Biophys J. 1962 Mar;2(2 Pt 2):259–323. doi: 10.1016/s0006-3495(62)86959-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ermishkin L. N., Liberman E. A., Smolianinov V. V. O pronitsaemosti ionov cherez membranu s uzkimi porami. Biofizika. 1968 Jan-Feb;13(1):205–207. [PubMed] [Google Scholar]
  14. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HUTTER O. F., NOBLE D. The chloride conductance of frog skeletal muscle. J Physiol. 1960 Apr;151:89–102. [PMC free article] [PubMed] [Google Scholar]
  16. Hansch C., Glave W. R. Structure-activity relationships in membrane-perturbing agents. Hemolytic, narcotic, and antibacterial compounds. Mol Pharmacol. 1971 May;7(3):337–354. [PubMed] [Google Scholar]
  17. LANDAU W. M. The essential mechanism in myotonia; an electromyographic study. Neurology. 1952 Sep-Oct;2(5):369–388. doi: 10.1212/wnl.2.9-10.369. [DOI] [PubMed] [Google Scholar]
  18. Lipicky R. J., Bryant S. H., Salmon J. H. Cable parameters, sodium, potassium, chloride, and water content, and potassium efflux in isolated external intercostal muscle of normal volunteers and patients with myotonia congenita. J Clin Invest. 1971 Oct;50(10):2091–2103. doi: 10.1172/JCI106703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McLaughlin S. G., Szabo G., Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol. 1971 Dec;58(6):667–687. doi: 10.1085/jgp.58.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moffett R. B., Tang A. H. Skeletal muscle stimulants. Substituted benzoic acids. J Med Chem. 1968 Sep;11(5):1020–1022. doi: 10.1021/jm00311a023. [DOI] [PubMed] [Google Scholar]
  21. Morgan K. G., Entrikin R. K., Bryant S. H. Myotonia and block of chloride conductance by iodide in avian muscle. Am J Physiol. 1975 Nov;229(5):1155–1158. doi: 10.1152/ajplegacy.1975.229.5.1155. [DOI] [PubMed] [Google Scholar]
  22. Palade P. T., Barchi R. L. Characteristics of the chloride conductance in muscle fibers of the rat diaphragm. J Gen Physiol. 1977 Mar;69(3):325–342. doi: 10.1085/jgp.69.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rüdel R., Senges J. Mammalian skeletal muscle: reduced chloride conductance in drug-induced myotonia and induction of myotonia by low-chloride solution. Naunyn Schmiedebergs Arch Pharmacol. 1972;274(4):337–347. doi: 10.1007/BF00501271. [DOI] [PubMed] [Google Scholar]
  24. Schauf C. L. The interactions of calcium with mpyxicola giant axons and a description in terms of a simple surface charge model. J Physiol. 1975 Jul;248(3):613–624. doi: 10.1113/jphysiol.1975.sp010991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Winer N., Klachko D. M., Baer R. D., Langley P. L., Burns T. W. Myotonic response induced by inhibitors of cholesterol biosynthesis. Science. 1966 Jul 15;153(3733):312–313. doi: 10.1126/science.153.3733.312. [DOI] [PubMed] [Google Scholar]
  26. Wright E. M., Diamond J. M. Effects of pH and polyvalent cations on the selective permeability of gall-bladder epithelium to monovalent ions. Biochim Biophys Acta. 1968 Aug;163(1):57–74. doi: 10.1016/0005-2736(68)90033-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES