Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 Jun 1;69(6):779–794. doi: 10.1085/jgp.69.6.779

Diffusion of carbon dioxide through lipid bilayer membranes. Effects of carbonic anhydrase, bicarbonate, and unstirred layers

J Gutknecht, MA Bisson, FC Tosteson
PMCID: PMC2215341  PMID: 408462

Abstract

Diffusion of (14)C-labeled CO(2) was measured through lipid bilayer membranes composed of egg lecithin and cholesterol (1:1 mol ratio) dissolved in n-decane. The results indicate that CO(2), but not HCO(3-), crosses the membrane and that different steps in the transport process are rate limiting under different conditions. In one series of experiments we studied one-way fluxes between identical solutions at constant pCO(2) but differing [HCO(3-)] and pH. In the absence of carbonic anhydrase (CA) the diffusion of CO(2) through the aqueous unstirred layers is rate limiting because the uncatalyzed hydration-dehydration of CO(2) is too slow to permit the high [HCO(3-)] to facilitate tracer diffusion through the unstirred layers. Addition of CA (ca. 1 mg/ml) to both bathing solutions causes a 10-100-fold stimulation of the CO(2) flux, which is proportional to [HCO(3-)] over the pH range 7-8. In the presence of CA the hydration- dehydration reaction is so fast that CO(2) transport across the entire system is rate limited by diffusion of HCO(3-) through unstirred layers. However, in the presence of CA when the ratio [HCO(3-) + CO(3=)]:[CO(2)] more than 1,000 (pH 9-10) the CO(2) flux reaches a maximum value. Under these conditions the diffusion of CO(2) through the membrane becomes rate limiting, which allows us to estimate a permeability coefficient of the membrane to CO(2) of 0.35 cm s(-1). In a second series of experiments we studied the effects of CA and buffer concentration on the net flux of CO(2). CA stimulates the net CO(2) flux in well buffered, but no in unbuffered, solutions. The buffer provides a proton source on the upstream side of the membrane and proton sink on the downstream side, thus allowing HCO(3-) to facilitate the net transport of CO(2) through the unstirred layers.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battino R., Evans F. D., Danforth W. F. The solubilities of seven gases in olive oil with reference to theories of transport through the cell membrane. J Am Oil Chem Soc. 1968 Dec;45(12):830–833. doi: 10.1007/BF02540163. [DOI] [PubMed] [Google Scholar]
  2. Broun G., Selegny E., Minh C. T., Thomas D. Facilitated transport of CO(2) across a membrane bearing carbonic anhydrase. FEBS Lett. 1970 Apr 16;7(3):223–226. doi: 10.1016/0014-5793(70)80166-1. [DOI] [PubMed] [Google Scholar]
  3. Bunce A. S., Hider R. C. The composition of black lipid membranes formed from egg-yolk lecithin, cholesterol and n-decane. Biochim Biophys Acta. 1974 Sep 23;363(3):423–427. doi: 10.1016/0005-2736(74)90081-9. [DOI] [PubMed] [Google Scholar]
  4. Donaldson T. L., Quinn J. A. Kinetic constants determined from membrane transport measurements: carbonic anhydrase activity at high concentrations. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4995–4999. doi: 10.1073/pnas.71.12.4995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Emanović D., Harrison F. A., Keynes R. D., Rankin J. C. The effect of acetzolamide on Ion transport across isolated sheep rumen epithelium. J Physiol. 1976 Jan;254(3):803–812. doi: 10.1113/jphysiol.1976.sp011260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Enns T. Facilitation by carbonic anhydrase of carbon dioxide transport. Science. 1967 Jan 6;155(3758):44–47. doi: 10.1126/science.155.3758.44. [DOI] [PubMed] [Google Scholar]
  7. Erdei L., Csorba I., Thuyen H. X. Simple, rapid method for detecting phase transititons of lipids. Lipids. 1975 Feb;10(2):115–117. doi: 10.1007/BF02532167. [DOI] [PubMed] [Google Scholar]
  8. Finkelstein A., Cass A. Effect of cholesterol on the water permeability of thin lipid membranes. Nature. 1967 Nov 18;216(5116):717–718. doi: 10.1038/216717a0. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein A. Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol. 1976 Aug;68(2):127–135. doi: 10.1085/jgp.68.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gros G., Moll W. The diffusion of carbon dioxide in erythrocytes and hemoglobin solutions. Pflugers Arch. 1971;324(3):249–266. doi: 10.1007/BF00586422. [DOI] [PubMed] [Google Scholar]
  11. Gutknecht J., Bruner L. J., Tosteson D. C. The permeability of thin lipid membranes to bromide and bromine. J Gen Physiol. 1972 Apr;59(4):486–592. doi: 10.1085/jgp.59.4.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gutknecht J., Tosteson D. C. Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers. Science. 1973 Dec 21;182(4118):1258–1261. doi: 10.1126/science.182.4118.1258. [DOI] [PubMed] [Google Scholar]
  13. Hicks R. M., Ketterer B., Warren R. C. The ultrastructure and chemistry of the luminal plasma membrane of the mammalian urinary bladder: a structure with low permeability to water and ions. Philos Trans R Soc Lond B Biol Sci. 1974 Jul 25;268(891):23–38. doi: 10.1098/rstb.1974.0013. [DOI] [PubMed] [Google Scholar]
  14. Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
  15. Maren T. H., Rayburn C. S., Liddell N. E. Inhibition by anions of human red cell carbonic anhydrase B: physiological and biochemical implications. Science. 1976 Feb 6;191(4226):469–472. doi: 10.1126/science.813299. [DOI] [PubMed] [Google Scholar]
  16. Papahadjopoulos D. Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim Biophys Acta. 1968 Sep 17;163(2):240–254. doi: 10.1016/0005-2736(68)90103-x. [DOI] [PubMed] [Google Scholar]
  17. Solomon A. K. Apparent viscosity of human red cell membranes. Biochim Biophys Acta. 1974 Nov 27;373(1):145–149. doi: 10.1016/0005-2736(74)90114-x. [DOI] [PubMed] [Google Scholar]
  18. Stehle R. G., Higuchi W. I. In vitro model for transport of solutes in three-phase system. I. Theoretical principles. J Pharm Sci. 1972 Dec;61(12):1922–1930. doi: 10.1002/jps.2600611208. [DOI] [PubMed] [Google Scholar]
  19. Suchdeo S. R., Schultz J. S. Mass transfer of Co2 across membranes: facilitation in the presence of bicarbonate ion and the enzyme carbonic anhydrase. Biochim Biophys Acta. 1974 Jun 29;352(3):412–440. doi: 10.1016/0005-2736(74)90232-6. [DOI] [PubMed] [Google Scholar]
  20. Toyoshima Y., Thompson T. E. Chloride flux in bilayer membranes: the electrically silent chloride flux in semispherical bilayers. Biochemistry. 1975 Apr 8;14(7):1518–1524. doi: 10.1021/bi00678a027. [DOI] [PubMed] [Google Scholar]
  21. Ward W. J., 3rd, Robb W. L. Carbon dioxide--oxygen separation: facilitated transport of carbon dioxide across a liquid film. Science. 1967 Jun 16;156(3781):1481–1484. doi: 10.1126/science.156.3781.1481. [DOI] [PubMed] [Google Scholar]
  22. White S. H. Phase transitions in planar bilayer membranes. Biophys J. 1975 Feb;15(2 Pt 1):95–117. doi: 10.1016/s0006-3495(75)85795-x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES