Abstract
Various drosophila mutants were used to dissect the electroretinogram (ERG) frequency response into components of different origins. The ommochrome granules in the receptor cell body are known to migrate in response to light, limiting the amount of light entering the rhabdomere. Comparison between the ERG frequency responses of the wild type and the mutant lacking the ommochrome granules indicates that the pigment migration reduces the amplitude gain at frequencies below 0.5 Hz. The ERG of drosophila compound eyes consists of contributions from receptor cells and the second-order cells in the lamina. Mutants with defective laminae showed a high-frequency cutoff with a corner frequency of about 20 Hz, while in wild type the response peaked in that frequency region. These results suggest that the lamina contributes mainly to the high-frequency components of the ERG transfer function. The shot noise model (Dodge et al., 1968) has been tested in drosophila by comparing the frequency response of the superimposed on the intracellular receptor potential. The results are consistent with the hypothesis that the receptor potential consists of a summation of small discrete potentials (bumps). In a mutant in which the bumps exhibit latency dispersion in response to a dim flash, the receptor showed a poor high-frequency response, the corner frequency being lowered to about 1-2 Hz. The slope of the cutoff was approximately 20 dB/dec indicating that the latency dispersion in this mutant is the major limiting factor in temporal resolution. Light-evoked high frequency oscillations have been observed in the ERG of another mutant. The oscillation was found sharply turned to light flickering at about 55 Hz.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADOLPH A. R. SPONTANEOUS SLOW POTENTIAL FLUCTUATIONS IN THE LIMULUS PHOTORECEPTOR. J Gen Physiol. 1964 Nov;48:297–322. doi: 10.1085/jgp.48.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- AUTRUM H. Electrophysiological analysis of the visual systems in insects. Exp Cell Res. 1958;14(Suppl 5):426–439. [PubMed] [Google Scholar]
- Alawi A. A., Pak W. L. On-transient of insect electroretinogram: its cellular origin. Science. 1971 Jun 4;172(3987):1055–1057. doi: 10.1126/science.172.3987.1055. [DOI] [PubMed] [Google Scholar]
- Boschek C. B. On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z Zellforsch Mikrosk Anat. 1971;118(3):369–409. doi: 10.1007/BF00331193. [DOI] [PubMed] [Google Scholar]
- DE LANGE DZN H. Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. J Opt Soc Am. 1958 Nov;48(11):777–784. doi: 10.1364/josa.48.000777. [DOI] [PubMed] [Google Scholar]
- DEVOE R. D. LINEAR RELATIONS BETWEEN STIMULUS AMPLITUDES AND AMPLITUDES OF RETINAL ACTION POTENTIALS FROM THE EYE OF THE WOLF SPIDER. J Gen Physiol. 1963 Sep;47:13–32. doi: 10.1085/jgp.47.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deland M. C., Pak W. L. Reversibly temperature sensitive phototransduction mutant of Drosophila melanogaster. Nat New Biol. 1973 Aug 8;244(136):184–186. doi: 10.1038/newbio244184a0. [DOI] [PubMed] [Google Scholar]
- Dodge F. A., Jr, Knight B. W., Toyoda J. Voltage noise in Limulus visual cells. Science. 1968 Apr 5;160(3823):88–90. doi: 10.1126/science.160.3823.88. [DOI] [PubMed] [Google Scholar]
- FUORTES M. G., HODGKIN A. L. CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS. J Physiol. 1964 Aug;172:239–263. doi: 10.1113/jphysiol.1964.sp007415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FUORTES M. G., YEANDLE S. PROBABILITY OF OCCURRENCE OF DISCRETE POTENTIAL WAVES IN THE EYE OF LIMULUS. J Gen Physiol. 1964 Jan;47:443–463. doi: 10.1085/jgp.47.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris W. A., Stark W. S., Walker J. A. Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol. 1976 Apr;256(2):415–439. doi: 10.1113/jphysiol.1976.sp011331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heisenberg M. Separation of receptor and lamina potentials in the electroretinogram of normal and mutant Drosophila. J Exp Biol. 1971 Aug;55(1):85–100. doi: 10.1242/jeb.55.1.85. [DOI] [PubMed] [Google Scholar]
- Järvilehto M., Zettler F. Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina. Z Zellforsch Mikrosk Anat. 1973;136(2):291–306. doi: 10.1007/BF00307446. [DOI] [PubMed] [Google Scholar]
- Knight B. W., Toyoda J. I., Dodge F. A., Jr A quantitative description of the dynamics of excitation and inhibition in the eye of Limulus. J Gen Physiol. 1970 Oct;56(4):421–437. doi: 10.1085/jgp.56.4.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuiper J. W., Leutscher-Hazelhoff J. T. Linear and nonlinear responses from the compound eye of Calliphora erythrocephala. Cold Spring Harb Symp Quant Biol. 1965;30:419–428. doi: 10.1101/sqb.1965.030.01.041. [DOI] [PubMed] [Google Scholar]
- Leutscher-Hazelhoff J. T. Linear and non-linear performance of transducer and pupil in Calliphora retinula cells. J Physiol. 1975 Mar;246(2):333–350. doi: 10.1113/jphysiol.1975.sp010893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCann G. D., Arnett D. W. Spectral and polarization sensitivity of the dipteran visual system. J Gen Physiol. 1972 May;59(5):534–558. doi: 10.1085/jgp.59.5.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paj W. K., Istrit S. E., Deland M. C., Wu C. F. Photoreceptor mutant of Drosophia: is protein involved in intermediate steps of phototransduction? Science. 1976 Nov 26;194(4268):956–959. doi: 10.1126/science.824732. [DOI] [PubMed] [Google Scholar]
- Pak W. L., Lidington K. J. Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. J Gen Physiol. 1974 Jun;63(6):740–756. doi: 10.1085/jgp.63.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinter R. B. Sinusoidal and delta function responses of visual cells of the Limulus eye. J Gen Physiol. 1966 Jan;49(3):565–593. doi: 10.1085/jgp.49.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ratliff F., Knight B. W., Jr, Dodge F. A., Jr, Hartline H. K. Fourier analysis of dynamics of excitation and inhibition in the eye of Limulus: amplitude, phase and distance. Vision Res. 1974 Nov;14(11):1155–1168. doi: 10.1016/0042-6989(74)90212-0. [DOI] [PubMed] [Google Scholar]
- Ratliff F., Knight B. W., Milkman N. Superposition of excitatory and inhibitory influences in the retina of Limulus: effect of delayed inhibition. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1558–1564. doi: 10.1073/pnas.67.3.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyoda J. Frequency characteristics of retinal neurons in the carp. J Gen Physiol. 1974 Feb;63(2):214–234. doi: 10.1085/jgp.63.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trujillo-Cenóz O. Some aspects of the structural organization of the intermediate retina of dipterans. J Ultrastruct Res. 1965 Aug;13(1):1–33. doi: 10.1016/s0022-5320(65)80086-7. [DOI] [PubMed] [Google Scholar]
- Wu C. F., Pak W. L. Quantal basis of photoreceptor spectral sensitivity of Drosophila melanogaster. J Gen Physiol. 1975 Aug;66(2):149–168. doi: 10.1085/jgp.66.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]