Abstract
The conductance of junctions between amphibian blastomeres is strongly voltage dependent. Isolated pairs of blastomeres from embryos of Ambystoma mexicanum, Xenopus laevis, and Rana pipiens were voltage clamped, and junctional current was measured during transjunctional voltage steps. The steady-state junctional conductance decreases as a steep function of transjunctional voltage of either polarity. A voltage- insensitive conductance less than 5% of the maximum remains at large transjunctional voltages. Equal transjunctional voltages of opposite polarities produce equal conductance changes. The conductance is half maximal at a transjunctional voltage of approximately 15 mV. The junctional conductance is insensitive to the potential between the inside and outside of the cells. The changes in steady-state junctional conductance may be accurately modeled for voltages of each polarity as arising from a reversible two-state system in which voltage linearly affects the energy difference between states. The voltage sensitivity can be accounted for by the movement of about six electron charges through the transjunctional voltage. The changes in junctional conductance are not consistent with a current-controlled or ionic accumulation mechanism. We propose that the intramembrane particles that comprise gap junctions in early amphibian embryos are voltage- sensitive channels.
Full Text
The Full Text of this article is available as a PDF (902.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett M. V., Goodenough D. A. Gap junctions, electrotonic coupling, and intercellular communication. Neurosci Res Program Bull. 1978 Sep;16(3):1–486. [PubMed] [Google Scholar]
- Bennett M. V., Spira M. E., Spray D. C. Permeability of gap junctions between embryonic cells of Fundulus: a reevaluation. Dev Biol. 1978 Jul;65(1):114–125. doi: 10.1016/0012-1606(78)90184-7. [DOI] [PubMed] [Google Scholar]
- Ehrenstein G., Blumenthal R., Latorre R., Lecar H. Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer. J Gen Physiol. 1974 Jun;63(6):707–721. doi: 10.1085/jgp.63.6.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrenstein G., Lecar H. Electrically gated ionic channels in lipid bilayers. Q Rev Biophys. 1977 Feb;10(1):1–34. doi: 10.1017/s0033583500000123. [DOI] [PubMed] [Google Scholar]
- Ehrenstein G., Lecar H., Nossal R. The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J Gen Physiol. 1970 Jan;55(1):119–133. doi: 10.1085/jgp.55.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FLICKINGER R. A., Jr A study of the metabolism of amphibian neural crest cells during their migration and pigmentation in vitro. J Exp Zool. 1949 Dec;112(3):465–484. doi: 10.1002/jez.1401120306. [DOI] [PubMed] [Google Scholar]
- Hanna R. B., Keeter J. S., Pappas G. D. The fine structure of a rectifying electrotonic synapse. J Cell Biol. 1978 Dec;79(3):764–773. doi: 10.1083/jcb.79.3.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanna R. B., Model P. G., Spray D. C., Bennett M. V., Harris A. L. Gap junctions in early amphibian embryos. Am J Anat. 1980 Jun;158(2):111–114. doi: 10.1002/aja.1001580202. [DOI] [PubMed] [Google Scholar]
- Harris A. L., Spray D. C., Bennett M. V. Kinetic properties of a voltage-dependent junctional conductance. J Gen Physiol. 1981 Jan;77(1):95–117. doi: 10.1085/jgp.77.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kater S. B., Galvin N. J. Physiological and morphological evidence for coupling in mouse salivary gland acinar cells. J Cell Biol. 1978 Oct;79(1):20–26. doi: 10.1083/jcb.79.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meech R. W., Thomas R. C. The effect of calcium injection on the intracellular sodium and pH of snail neurones. J Physiol. 1977 Mar;265(3):867–879. doi: 10.1113/jphysiol.1977.sp011749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rink T. J., Tsien R. Y., Warner A. E. Free calcium in Xenopus embryos measured with ion-selective microelectrodes. Nature. 1980 Feb 14;283(5748):658–660. doi: 10.1038/283658a0. [DOI] [PubMed] [Google Scholar]
- Rose B., Loewenstein W. R. Permeability of cell junction depends on local cytoplasmic calcium activity. Nature. 1975 Mar 20;254(5497):250–252. doi: 10.1038/254250a0. [DOI] [PubMed] [Google Scholar]
- Schein S. J., Colombini M., Finkelstein A. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol. 1976 Dec 28;30(2):99–120. doi: 10.1007/BF01869662. [DOI] [PubMed] [Google Scholar]
- Spray D. C., Harris A. L., Bennett M. V. Voltage dependence of junctional conductance in early amphibian embryos. Science. 1979 Apr 27;204(4391):432–434. doi: 10.1126/science.312530. [DOI] [PubMed] [Google Scholar]
- Stewart W. W. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell. 1978 Jul;14(3):741–759. doi: 10.1016/0092-8674(78)90256-8. [DOI] [PubMed] [Google Scholar]
- Turin L., Warner A. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature. 1977 Nov 3;270(5632):56–57. doi: 10.1038/270056a0. [DOI] [PubMed] [Google Scholar]