Abstract
Cyclo(L-Lac-L-Val-D-Pro-D-Val)3 (PV-Lac) a structural analogue of the ion-carrier valinomycin, increases the cation permeability of lipid bilayer membranes by forming a 1:1 ion-carrier complex. The selectively sequence for PV-Lac is identical to that of valinomycin; i.e., Rb+ greater than K+ greater than Cs+ greater than or equal to NH+4 greater than Na+ greater than Li+. The steady-state zero-voltage conductance, G(0), is a saturating function of KCl concentration. A similar behavior was found for Rb+, Cs+, and NH+4. However, the ion concentration at which G(0) reaches a plateau strongly depends on membrane composition. The current-voltage curves present saturating characteristics, except at low ion concentrations of Rb+, K+, or Cs+. The ion concentration at which the saturating characteristics appear depends on membrane composition. These and other results presented in this paper agree with a model that assumes complexation between carrier and ion at the membrane-water interface. Current relaxation after voltage-jump studies were also performed for PV-Lac. Both the time constant and the amplitude of the current after a voltage jump strongly depend on ion concentration and membrane composition. These results, together with the stationary conductance data, were used to evaluate the rate constants of the PV-Lac-mediated K+ transport. In glycerolmonooleate they are: association rate constant, 2 x 10(6) M-1 s-1; dissociation rate constant, 4 x 10(5) s-1; translocation rate constant for complex, 5 x 10(4) s-1; and the rate of translocation of the free carrier (ks), 55 s-1. ks is much smaller for PV-Lac than for valinomycin and thus limits the efficiency with which the carrier is able to translocate cations across the membrane.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez O., Latorre R. Voltage-dependent capacitance in lipid bilayers made from monolayers. Biophys J. 1978 Jan;21(1):1–17. doi: 10.1016/S0006-3495(78)85505-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen O. S., Feldberg S., Nakadomari H., Levy S., McLaughlin S. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes. Biophys J. 1978 Jan;21(1):35–70. doi: 10.1016/S0006-3495(78)85507-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen O. S., Finkelstein A., Katz I., Cass A. Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol. 1976 Jun;67(6):749–771. doi: 10.1085/jgp.67.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen O. S., Fuchs M. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. Biophys J. 1975 Aug;15(8):795–830. doi: 10.1016/S0006-3495(75)85856-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andreoli T. E., Tieffenberg M., Tosteson D. C. The effect of valinomycin on the ionic permeability of thin lipid membranes. J Gen Physiol. 1967 Dec;50(11):2527–2545. doi: 10.1085/jgp.50.11.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benz R. Alkali ion transport through lipid bilayer membranes mediated by enniatin A and B and beauvericin. J Membr Biol. 1978 Nov 8;43(4):367–394. doi: 10.1007/BF01871697. [DOI] [PubMed] [Google Scholar]
- Benz R., Fröhlich O., Läuger P. Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers. Biochim Biophys Acta. 1977 Feb 4;464(3):465–481. doi: 10.1016/0005-2736(77)90023-2. [DOI] [PubMed] [Google Scholar]
- Benz R., Gisin B. F., Ting-Beall H. P., Tosteson D. C., Läuger P. Mechanism of ion transport through lipid bilayer-membranes mediated by peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro). Biochim Biophys Acta. 1976 Dec 14;455(3):665–684. doi: 10.1016/0005-2736(76)90040-7. [DOI] [PubMed] [Google Scholar]
- Benz R., Läuger P. Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique. J Membr Biol. 1976 Jun 9;27(1-2):171–191. doi: 10.1007/BF01869135. [DOI] [PubMed] [Google Scholar]
- Benz R., Stark G., Janko K., Läuger P. Valinomycin-mediated ion transport through neutral lipid membranes: influence of hydrocarbon chain length and temperature. J Membr Biol. 1973;14(4):339–364. doi: 10.1007/BF01868084. [DOI] [PubMed] [Google Scholar]
- Ciani S. M., Eisenman G., Laprade R., Szabo G. Theoretical analysis of carrier-mediated electrical properties of bilayer membranes. Membranes. 1973;2:61–177. [PubMed] [Google Scholar]
- Ciani S. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: II. A theoretical model. J Membr Biol. 1976 Dec 25;30(1):45–63. doi: 10.1007/BF01869659. [DOI] [PubMed] [Google Scholar]
- Davis D. G., Gisin B. F., Tosteson D. C. Conformational studies of peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro]3, a cation-binding analogue of valinomycin. Biochemistry. 1976 Feb 24;15(4):768–774. doi: 10.1021/bi00649a007. [DOI] [PubMed] [Google Scholar]
- Gisin B. F., Merrifield R. B. Synthesis of a hydrophobic potassium binding peptide. J Am Chem Soc. 1972 Aug 23;94(17):6165–6170. doi: 10.1021/ja00772a039. [DOI] [PubMed] [Google Scholar]
- Gisin B. F., Merrifield R. B., Tosteson D. C. Solid-phase synthesis of the cyclododecadepsipeptide Valinomycin. J Am Chem Soc. 1969 May 7;91(10):2691–2695. doi: 10.1021/ja01038a047. [DOI] [PubMed] [Google Scholar]
- Gisin B. F. The monitoring of reactions in solid-phase peptide synthesis with picric acid. Anal Chim Acta. 1972 Jan;58(1):248–249. doi: 10.1016/S0003-2670(00)86882-8. [DOI] [PubMed] [Google Scholar]
- Gisin B. F., Ting-Beall H. P., Davis D. G., Grell E., Tosteson D. C. Selective ion binding and membrane activity of synthetic cyclopeptides. Biochim Biophys Acta. 1978 May 18;509(2):201–217. doi: 10.1016/0005-2736(78)90041-x. [DOI] [PubMed] [Google Scholar]
- Hamilton J. A., Sabesan M. N., Gisin B. F., Steinrauf L. K. Crystal structure of peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro). Biochem Biophys Res Commun. 1978 Feb 28;80(4):949–954. doi: 10.1016/0006-291x(78)91337-2. [DOI] [PubMed] [Google Scholar]
- Haynes D. H., Pressman B. C. Two-phase partition studies of alkali cation complexation by ionophores. J Membr Biol. 1974;18(1):1–21. doi: 10.1007/BF01870099. [DOI] [PubMed] [Google Scholar]
- Hladky S. B. The energy barriers to ion transport by nonactin across thin lipid membranes. Biochim Biophys Acta. 1974 May 30;352(1):71–85. doi: 10.1016/0005-2736(74)90180-1. [DOI] [PubMed] [Google Scholar]
- Hladky S. B. The steady-state theory of the carrier transport of ions. J Membr Biol. 1972;10(1):67–91. doi: 10.1007/BF01867848. [DOI] [PubMed] [Google Scholar]
- Ivanov V. T., Laine I. A., Abdulaev N. D., Senyavina L. B., Popov E. M. The physicochemical basis of the functioning of biological membranes: the conformation of valinomycin and its K+ complex in solution. Biochem Biophys Res Commun. 1969 Mar 31;34(6):803–811. doi: 10.1016/0006-291x(69)90251-4. [DOI] [PubMed] [Google Scholar]
- Knoll W., Stark G. An extended kinetic analysis of valinomycin-induced Rb-transport through monoglyceride membranes. J Membr Biol. 1975;25(3-4):249–270. doi: 10.1007/BF01868578. [DOI] [PubMed] [Google Scholar]
- Krasne S., Eisenman G. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nonactin-type carriers. J Membr Biol. 1976 Dec 25;30(1):1–44. doi: 10.1007/BF01869658. [DOI] [PubMed] [Google Scholar]
- Laprade R., Ciani S., Eisenman G., Szabo G. The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpreatation. Membranes. 1975;3:127–214. [PubMed] [Google Scholar]
- Läuger P., Stark G. Kinetics of carrier-mediated ion transport across lipid bilayer membranes. Biochim Biophys Acta. 1970 Sep 15;211(3):458–466. doi: 10.1016/0005-2736(70)90251-8. [DOI] [PubMed] [Google Scholar]
- Markin V. S., Pastushenko V. F., Krishtalik L. I., Liberman E. A., Toplay V. P. Membrannyi potentsial i tok korotkogo zamykaniia na iskusstvennykh fosfolipidnykh membranakh v prisutstvii razobshchitelei okislitel'nogo fosforilirovaniia. Biofizika. 1969 May-Jun;14(3):462–473. [PubMed] [Google Scholar]
- Melnik E., Latorre R., Hall J. E., Tosteson D. C. Phloretin-induced changes in ion transport across lipid bilayer membranes. J Gen Physiol. 1977 Feb;69(2):243–257. doi: 10.1085/jgp.69.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mueller P., Rudin D. O. Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem Biophys Res Commun. 1967 Feb 21;26(4):398–404. doi: 10.1016/0006-291x(67)90559-1. [DOI] [PubMed] [Google Scholar]
- Ohnishi M., Urry D. W. Temperature dependence of amide proton chemical shifts: the secondary structures of gramicidin S and valinomycin. Biochem Biophys Res Commun. 1969 Jul 23;36(2):194–202. doi: 10.1016/0006-291x(69)90314-3. [DOI] [PubMed] [Google Scholar]
- Parsegian A. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature. 1969 Mar 1;221(5183):844–846. doi: 10.1038/221844a0. [DOI] [PubMed] [Google Scholar]
- Pinkerton M., Steinrauf L. K., Dawkins P. The molecular structure and some transport properties of valinomycin. Biochem Biophys Res Commun. 1969 May 22;35(4):512–518. doi: 10.1016/0006-291x(69)90376-3. [DOI] [PubMed] [Google Scholar]
- Reyes J., Latorre R. Effect of the anesthetics benzyl alcohol and chloroform on bilayers made from monolayers. Biophys J. 1979 Nov;28(2):259–279. doi: 10.1016/S0006-3495(79)85175-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scotchler J., Lozier R., Robinson A. B. Cleavage of single amino acid residues from Merrifield resin with hydrogen chloride and hydrogen fluoride. J Org Chem. 1970 Sep;35(9):3151–3152. doi: 10.1021/jo00834a067. [DOI] [PubMed] [Google Scholar]
- Stark G., Ketterer B., Benz R., Läuger P. The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Biophys J. 1971 Dec;11(12):981–994. doi: 10.1016/S0006-3495(71)86272-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szabo G., Eisenman G., Laprade R., Ciani S. M., Krasne S. Experimentally observed effects of carriers on the electrical properties of bilayer membranes--equilibrium domain. With a contribution on the molecular basis of ion selectivity. Membranes. 1973;2:179–328. [PubMed] [Google Scholar]
- Ting-Beall H. P., Tosteson M. T., Gisin B. F., Tosteson D. C. Effect of peptide PV on the ionic permeability of lipid bilayer membranes. J Gen Physiol. 1974 Apr;63(4):492–508. doi: 10.1085/jgp.63.4.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
