Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of General Physiology logoLink to The Journal of General Physiology
. 1981 Apr 1;77(4):349–371. doi: 10.1085/jgp.77.4.349

Electrical resistance of a capillary endothelium

PMCID: PMC2215420  PMID: 7241087

Abstract

The electrical resistance of consecutive segments of capillaries has been determined by a method in which the microvessels were treated as a leaky, infinite cable. A two-dimensional analytical model to describe the potential field in response to intracapillary current injection was formulated. The model allowed determination of the electrical resistance from four sets of data: the capillary radius, the capillary length constant, the length constant in the mesentery perpendicular to the capillary, and the relative potential drop across the capillary wall. Of particular importance were the mesothelial membranes covering the mesenteric capillaries with resistances several times higher than that of the capillary endothelium. 27 frog mesenteric capillaries were characterized. The average resistance of the endothelium was 1.85 omega cm2, which compares well with earlier determinations of the ionic permeability of such capillaries. However, heterogeneity with respect to resistance was observed, that of 10 arterial capillaries being 3.0 omega cm2 as compared with 0.95 omega cm2 for 17 mid- and venous capillaries. The average in situ length constant was 99 micrometers for the arterial capillaries and 57 micrometers for the mid- and venous capillaries. It is likely that the ions that carry the current must move paracellularly, through junctions that are leaky to small solutes.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boulpaep E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am J Physiol. 1972 Mar;222(3):517–531. doi: 10.1152/ajplegacy.1972.222.3.517. [DOI] [PubMed] [Google Scholar]
  2. Boulpaep E. L., Seely J. F. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am J Physiol. 1971 Oct;221(4):1084–1096. doi: 10.1152/ajplegacy.1971.221.4.1084. [DOI] [PubMed] [Google Scholar]
  3. Bundgaard M., Frøkjaer-Jensen J., Crone C. Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6439–6442. doi: 10.1073/pnas.76.12.6439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crone C., Frøkjaer-Jensen J., Friedman J. J., Christensen O. The permeability of single capillaries to potassium ions. J Gen Physiol. 1978 Feb;71(2):195–220. doi: 10.1085/jgp.71.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curry F. E., Michel C. C., Mason J. C. Osmotic reflextion coefficients of capillary walls to low molecular weight hydrophilic solutes measured in single perfused capillaries of the frog mesentery. J Physiol. 1976 Oct;261(2):319–336. doi: 10.1113/jphysiol.1976.sp011561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curry F. R. Is the transport of hydrophilic substances across the capillary wall determined by a network of fibrous molecules? Physiologist. 1980 Feb;23(1):90–93. [PubMed] [Google Scholar]
  7. Fraser P. A., Smaje L. H., Verrinder A. Microvascular pressures and filtration coefficients in the cat mesentery. J Physiol. 1978 Oct;283:439–456. doi: 10.1113/jphysiol.1978.sp012511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972 Jan 5;235(53):9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
  9. Frøkjaer-Jensen J., Christensen O. Potassium permeability of the mesothelium of the frog mesentery. Acta Physiol Scand. 1979 Feb;105(2):228–238. doi: 10.1111/j.1748-1716.1979.tb06335.x. [DOI] [PubMed] [Google Scholar]
  10. Frøkjaer-Jensen J. Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J Ultrastruct Res. 1980 Oct;73(1):9–20. doi: 10.1016/0022-5320(80)90111-2. [DOI] [PubMed] [Google Scholar]
  11. Hansen A. J., Lund-Andersen H., Crone C. K+-permeability of the blood-brain barrier, investigated by aid of a K+-sensitive microelectrode. Acta Physiol Scand. 1977 Dec;101(4):438–445. doi: 10.1111/j.1748-1716.1977.tb06027.x. [DOI] [PubMed] [Google Scholar]
  12. Hegel U., Frömter E., Wick T. Der elektrische Wandwiderstand des proximalen Konvolutes der Rattenniere. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;294(4):274–290. [PubMed] [Google Scholar]
  13. Hull B. E., Staehelin L. A. Functional significance of the variations in the geometrical organization of tight junction networks. J Cell Biol. 1976 Mar;68(3):688–704. doi: 10.1083/jcb.68.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Intaglietta M. Evidence for a gradient of permeability in frog mesenteric capillaries. Bibl Anat. 1967;9:465–468. [PubMed] [Google Scholar]
  15. Martínez-Palomo A., Erlij D. Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4487–4491. doi: 10.1073/pnas.72.11.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mason J. C., Curry F. E., Michel C. C. The effects of proteins upon the filtration coefficient of individually perfused frog mesenteric capillaries. Microvasc Res. 1977 Mar;13(2):185–202. doi: 10.1016/0026-2862(77)90084-x. [DOI] [PubMed] [Google Scholar]
  17. Mason J. C., Curry F. E., White I. F., Michel C. C. The ultrastructure of frog mesenteric capillaries of known filtration coefficient. Q J Exp Physiol Cogn Med Sci. 1979 Jul;64(3):217–224. doi: 10.1113/expphysiol.1979.sp002474. [DOI] [PubMed] [Google Scholar]
  18. Michel C. C. Filtration coefficients and osmotic reflexion coefficients of the walls of single frog mesenteric capillaries. J Physiol. 1980 Dec;309:341–355. doi: 10.1113/jphysiol.1980.sp013512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Michel C. C., Mason J. C., Curry F. E., Tooke J. E., Hunter P. J. A development of the Landis technique for measuring the filtration coefficient of individual capillaries in the frog mesentery. Q J Exp Physiol Cogn Med Sci. 1974 Oct;59(4):283–309. doi: 10.1113/expphysiol.1974.sp002275. [DOI] [PubMed] [Google Scholar]
  20. PAPPENHEIMER J. R. Passage of molecules through capillary wals. Physiol Rev. 1953 Jul;33(3):387–423. doi: 10.1152/physrev.1953.33.3.387. [DOI] [PubMed] [Google Scholar]
  21. Palade G. E., Simionescu M., Simionescu N. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand Suppl. 1979;463:11–32. [PubMed] [Google Scholar]
  22. Perl W. Modified filtration-permeability model of transcapillary transport--a solution of the Pappenheimer pore puzzle? Microvasc Res. 1971 Jul;3(3):233–251. doi: 10.1016/0026-2862(71)90051-3. [DOI] [PubMed] [Google Scholar]
  23. Schafer J. A., Troutman S. L., Andreoli T. E. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J Gen Physiol. 1974 Nov;64(5):582–607. doi: 10.1085/jgp.64.5.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Simionescu M., Simionescu N., Palade G. E. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol. 1975 Dec;67(3):863–885. doi: 10.1083/jcb.67.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Simionescu N., Siminoescu M., Palade G. E. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol. 1975 Mar;64(3):586–607. doi: 10.1083/jcb.64.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES