Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1981 Mar 1;77(3):273–293. doi: 10.1085/jgp.77.3.273

Endplate channel block by guanidine derivatives

PMCID: PMC2215431  PMID: 6973006

Abstract

The effects of the n-alkyl derivatives of guanidine on the frog neuromuscular junction were studied using the two-microelectrode voltage clamp and other electrophysiological techniques. Methyl-, ethyl- , and propylguanidine stimulated the nerve-evoked release of transmitter. However, amyl-and octylguanidine had no apparent presynaptic action. All of the derivatives blocked the postsynaptic response to acetylcholine, the potency sequence being octyl-greater than amyl-greater than propyl-, methyl-greater than ethylguanidine. Methyl- and octylguanidine did not protect the receptor from alpha- bungarotoxin block, suggesting that these compounds do not bind to the receptor but probably block the ionic channel. Methyl-, ethyl-, and propylguanidine shortened inward endplate currents but prolonged outward currents. Amylguanidine prolonged both inward and outward endplate currents, and the currents became biphasic at negative membrane potentials. Octylguanidine increased the rate of decay of endplate currents at all potentials. All of the derivatives blocked inward endplate currents more markedly than outward currents, resulting in a highly nonlinear current-voltage relation. Methyl-, ethyl-, and propylguanidine reversed the voltage dependence of endplate current decay, while amyl-and octylguanidine reduced the voltage dependence of endplate current decay. Octylguanidine appears to block the ionic channel in both the open and the closed state. The block of the open channel follows pseudo-first-order kinetics with a forward rate constant of 4-6 X 10(7) M-1 s-1.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R. Drug blockade of open end-plate channels. J Physiol. 1976 Sep;260(3):531–552. doi: 10.1113/jphysiol.1976.sp011530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams P. R., Sakmann B. Decamethonium both opens and blocks endplate channels. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2994–2998. doi: 10.1073/pnas.75.6.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adams P. R. Voltage jump analysis of procaine action at frog end-plate. J Physiol. 1977 Jun;268(2):291–318. doi: 10.1113/jphysiol.1977.sp011858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Adler M., Oliveira A. C., Eldefrawi M. E., Eldefrawi A. T., Albuquerque E. X. Tetraethylammonium: voltage-dependent action on endplate conductance and inhibition of ligand binding to postsynaptic proteins. Proc Natl Acad Sci U S A. 1979 Jan;76(1):531–535. doi: 10.1073/pnas.76.1.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Farley J. M., Glavinović M. I., Watanabe S., Narahashi T. Stimulation of transmitter release by guanidine derivatives. Neuroscience. 1979;4(10):1511–1519. doi: 10.1016/0306-4522(79)90056-3. [DOI] [PubMed] [Google Scholar]
  6. Gage P. W., McBurney R. N., Van Helden D. Octanol reduces end-plate channel lifetime. J Physiol. 1978 Jan;274:279–298. doi: 10.1113/jphysiol.1978.sp012147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giovannetti S., Biagini M., Balestri P. L., Navalesi R., Giagnoni P., De Matteis A., Ferro-Milone P., Perfetti C. Uraemia-like syndrome in dogs chronically intoxicated with methylguanidine and creatinine. Clin Sci. 1969 Jun;36(3):445–452. [PubMed] [Google Scholar]
  8. Goldner M. M., Narahashi T. Effects of edrophonium on end-plate currents in frog skeletal muscle. Eur J Pharmacol. 1974 Mar;25(3):362–371. doi: 10.1016/0014-2999(74)90266-0. [DOI] [PubMed] [Google Scholar]
  9. Hille B. The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. Biophys J. 1975 Jun;15(6):615–619. doi: 10.1016/S0006-3495(75)85842-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  11. Kirsch G. E., Yeh J. Z., Farley J. M., Narahashi T. Interaction of n-alkylguanidines with the sodium channels of squid axon membrane. J Gen Physiol. 1980 Sep;76(3):315–335. doi: 10.1085/jgp.76.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kordas M. The effect of procaine on neuromuscular transmission. J Physiol. 1970 Aug;209(3):689–699. doi: 10.1113/jphysiol.1970.sp009186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kusano K. Effect of guanidine on the squid giant synapse. J Neurobiol. 1970;1(4):459–469. doi: 10.1002/neu.480010408. [DOI] [PubMed] [Google Scholar]
  14. Magleby K. L., Stevens C. F. A quantitative description of end-plate currents. J Physiol. 1972 May;223(1):173–197. doi: 10.1113/jphysiol.1972.sp009840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Magleby K. L., Terrar D. A. Factors affecting the time course of decay of end-plate currents: a possible cooperative action of acetylcholine on receptors at the frog neuromuscular junction. J Physiol. 1975 Jan;244(2):467–495. doi: 10.1113/jphysiol.1975.sp010808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Masukawa L. M., Albuquerque E. X. Voltage- and time-dependent action of histrionicotoxin on the endplate current of the frog muscle. J Gen Physiol. 1978 Sep;72(3):351–367. doi: 10.1085/jgp.72.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neher E., Steinbach J. H. Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol. 1978 Apr;277:153–176. doi: 10.1113/jphysiol.1978.sp012267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. OTSUKA M., ENDO M. The effect of guanidine on neuromuscular transmission. J Pharmacol Exp Ther. 1960 Mar;128:273–282. [PubMed] [Google Scholar]
  20. Reed J. K., Trzos W. Interaction of substituted guanidines with the tetrodotoxin-binding component in Electrophorus electricus. Arch Biochem Biophys. 1979 Jul;195(2):414–422. doi: 10.1016/0003-9861(79)90368-0. [DOI] [PubMed] [Google Scholar]
  21. Rojas E., Rudy B. Destruction of the sodium conductance inactivation by a specific protease in perfused nerve fibres from Loligo. J Physiol. 1976 Nov;262(2):501–531. doi: 10.1113/jphysiol.1976.sp011608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. TAKEUCHI A., TAKEUCHI N. Active phase of frog's end-plate potential. J Neurophysiol. 1959 Jul;22(4):395–411. doi: 10.1152/jn.1959.22.4.395. [DOI] [PubMed] [Google Scholar]
  23. Teräväinen H., Larsen A. Effect of guanidine on quantal release of acetylcholine in the mammalian myoneural junction. Exp Neurol. 1975 Sep;48(3 Pt 1):601–609. doi: 10.1016/0014-4886(75)90017-5. [DOI] [PubMed] [Google Scholar]
  24. Tsai M. C., Mansour N. A., Eldefrawi A. T., Eldefrawi M. E., Albuquerque E. X. Mechanism of action of amantadine on neuromuscular transmission. Mol Pharmacol. 1978 Sep;14(5):787–803. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES