Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1981 May 1;77(5):531–547. doi: 10.1085/jgp.77.5.531

Cesium blockade of delayed outward currents and electrically induced pacemaker activity in mammalian ventricular myocardium

PMCID: PMC2215440  PMID: 6262430

Abstract

The effects of Cs+, 5-25 mM, were studied in cat and guinea pig papillary muscles using voltage clamp and current clamp techniques. In solutions containing normal K+, the major effects of Cs+ were depolarization of the resting potential and reduction of the delayed outward current (ixl) between -80 and -20 mV. Both inward and outward portions of the isochronal current voltage relation (l-s clamps) were reduced by extracellular Cs+. This resulted in a substantial reduction of inward rectification and, by subtraction from the normal I-V relationship, the definition of a Cs+-sensitive component of current. Under current clamp conditions, 5-10 mM Cs+ produced a dose-dependent slowing of repetitive firing induced by depolarization. At higher concentrations (25 mM) the resting potential was depolarized and repetitive activity could not be induced by further depolarization. However, release of hyperpolarizing pulses was followed by prolonged bursts of repetitive action potentials, suggesting partial reversal of blockade or participation of another pacemaker process. The experimental results and a numerical simulation show that under readily attainable conditions, reduction in an outward pacemaker current may slow pacemaker activity.

Full Text

The Full Text of this article is available as a PDF (928.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman W. J., Jr, French R. J. Blocking of the squid axon potassium channel by external caesium ions. J Physiol. 1978 Mar;276:13–25. doi: 10.1113/jphysiol.1978.sp012217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adelman W. J., Jr, Senft J. P. Dynamic asymmetries in the squid axon membrane. J Gen Physiol. 1968 May;51(5 Suppl):102S+–102S+. [PubMed] [Google Scholar]
  3. Attwell D., Cohen I. The voltage clamp of multicellular preparations. Prog Biophys Mol Biol. 1977;31(3):201–245. doi: 10.1016/0079-6107(78)90009-3. [DOI] [PubMed] [Google Scholar]
  4. Beeler G. W., Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol. 1977 Jun;268(1):177–210. doi: 10.1113/jphysiol.1977.sp011853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Begenisich T., De Weer P. Ionic interactions in the potassium channel of squid giant axons. Nature. 1977 Oct 20;269(5630):710–711. doi: 10.1038/269710a0. [DOI] [PubMed] [Google Scholar]
  6. Bezanilla F., Armstrong C. M. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol. 1972 Nov;60(5):588–608. doi: 10.1085/jgp.60.5.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown H. F., Clark A., Noble S. J. Analysis of pace-maker and repolarization currents in frog atrial muscle. J Physiol. 1976 Jul;258(3):547–577. doi: 10.1113/jphysiol.1976.sp011435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown H. F., Clark A., Noble S. J. Identification of the pace-maker current in frog atrium. J Physiol. 1976 Jul;258(3):521–545. doi: 10.1113/jphysiol.1976.sp011434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown H. F., Clark A., Noble S. J. Pacemaker current in frog atrium. Nat New Biol. 1972 Jan 5;235(53):30–31. doi: 10.1038/newbio235030a0. [DOI] [PubMed] [Google Scholar]
  10. Brown H. F., McNaughton P. A., Noble D., Noble S. J. Adrenergic control of cardian pacemaker currents. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):527–537. doi: 10.1098/rstb.1975.0029. [DOI] [PubMed] [Google Scholar]
  11. Cameliet E. Decrease of K efflux and influx by external Cs ions in cardiac Purkinje and muscle cells. Pflugers Arch. 1980 Jan;383(2):143–150. doi: 10.1007/BF00581875. [DOI] [PubMed] [Google Scholar]
  12. Carmeliet E. Induction of inward going rectification in sheep cardiac Purkinje fibers. Arch Int Pharmacodyn Ther. 1979 Dec;242(2):296–297. [PubMed] [Google Scholar]
  13. Carmeliet E. Voltage dependent block of inward going rectification in cardiac Purkinje fibers by external Cs ions. Arch Int Pharmacodyn Ther. 1979 Dec;242(2):294–295. [PubMed] [Google Scholar]
  14. Ciani S., Krasne S., Hagiwara S. A model for the effects of potential and external K+ concentration on the Cs+ blocking of inward rectification. Biophys J. 1980 Apr;30(1):199–204. doi: 10.1016/S0006-3495(80)85089-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gay L. A., Stanfield P. R. Cs(+) causes a voltage-dependent block of inward K currents in resting skeletal muscle fibres. Nature. 1977 May 12;267(5607):169–170. doi: 10.1038/267169a0. [DOI] [PubMed] [Google Scholar]
  16. Goldman Y., Morad M. Measurement of transmembrane potential and current in cardiac muscle: a new voltage clamp method. J Physiol. 1977 Jul;268(3):613–654. doi: 10.1113/jphysiol.1977.sp011875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Guerin M., Wallon G. The reversible replacement of internal potassium by caesium in isolated turtle heart. J Physiol. 1979 Aug;293:525–537. doi: 10.1113/jphysiol.1979.sp012905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hagiwara S., Miyazaki S., Rosenthal N. P. Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol. 1976 Jun;67(6):621–638. doi: 10.1085/jgp.67.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hauswirth O., Noble D., Tsien R. W. The mechanism of oscillatory activity at low membrane potentials in cardiac Purkinje fibres. J Physiol. 1969 Jan;200(1):255–265. doi: 10.1113/jphysiol.1969.sp008691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hille B. Potassium channels in myelinated nerve. Selective permeability to small cations. J Gen Physiol. 1973 Jun;61(6):669–686. doi: 10.1085/jgp.61.6.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hobbs A. S., Dunham P. B. Interaction of external alkali metal ions with the Na-K pump of human erythrocytes: a comparison of their effects on activation of the pump and on the rate of ouabain binding. J Gen Physiol. 1978 Sep;72(3):381–402. doi: 10.1085/jgp.72.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Imanishi S., Surawicz B. Automatic activity in depolarized guinea pig ventricular myocardium. Characteristics and mechanisms. Circ Res. 1976 Dec;39(6):751–759. doi: 10.1161/01.res.39.6.751. [DOI] [PubMed] [Google Scholar]
  24. Isenberg G. Cardiac Purkinje fibers: cesium as a tool to block inward rectifying potassium currents. Pflugers Arch. 1976 Sep 30;365(2-3):99–106. doi: 10.1007/BF01067006. [DOI] [PubMed] [Google Scholar]
  25. Katzung B. G. Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea pig papillary muscle. Circ Res. 1975 Jul;37(1):118–127. doi: 10.1161/01.res.37.1.118. [DOI] [PubMed] [Google Scholar]
  26. Katzung B. G., Morgenstern J. A. Effects of extracellular potassium on ventricular automaticity and evidence for a pacemaker current in mammalian ventricular myocardium. Circ Res. 1977 Jan;40(1):105–111. doi: 10.1161/01.res.40.1.105. [DOI] [PubMed] [Google Scholar]
  27. Lenfant J., Mironneau J., Aka J. K. Activité répétive de la fibre sino-auriculaire de grenouille: analyse des courants membranaires responsables de l'automatisme cardiaque. J Physiol (Paris) 1972;64(1):5–18. [PubMed] [Google Scholar]
  28. McDonald T. F., Trautwein W. Membrane currents in cat myocardium: separation of inward and outward components. J Physiol. 1978 Jan;274:193–216. doi: 10.1113/jphysiol.1978.sp012143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McDonald T. F., Trautwein W. The potassium current underlying delayed rectification in cat ventricular muscle. J Physiol. 1978 Jan;274:217–246. doi: 10.1113/jphysiol.1978.sp012144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Meier C. F., Jr, Katzung B. G. Effects of cesium and barium on depolarization: induced automaticity in ventricular myocardium. Proc West Pharmacol Soc. 1978;21:71–75. [PubMed] [Google Scholar]
  31. Noble D., Tsien R. W. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol. 1969 Jan;200(1):205–231. doi: 10.1113/jphysiol.1969.sp008689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Noble D., Tsien R. W. Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current. J Physiol. 1969 Jan;200(1):233–254. doi: 10.1113/jphysiol.1969.sp008690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Noma A., Irisawa H. A time- and voltage-dependent potassium current in the rabbit sinoatrial node cell. Pflugers Arch. 1976 Nov 5;366(2-3):251–258. doi: 10.1007/BF00585886. [DOI] [PubMed] [Google Scholar]
  34. Prasad K., Midha K. K. Effect of cesium on the properties of cardiac muscle. Jpn Heart J. 1973 Sep;14(5):454–466. doi: 10.1536/ihj.14.454. [DOI] [PubMed] [Google Scholar]
  35. Sjodin R. A., Beaugé L. A. Strophanthidin-sensitive transport of cesium and sodium in muscle cells. Science. 1967 Jun 2;156(3779):1248–1250. doi: 10.1126/science.156.3779.1248. [DOI] [PubMed] [Google Scholar]
  36. Trautwein W., McDonald T. F. Current-voltage relations in ventricular muscle preparations from different species. Pflugers Arch. 1978 Apr 25;374(1):79–89. doi: 10.1007/BF00585700. [DOI] [PubMed] [Google Scholar]
  37. Vassalle M. Cardiac automaticity and its control. Am J Physiol. 1977 Dec;233(6):H625–H634. doi: 10.1152/ajpheart.1977.233.6.H625. [DOI] [PubMed] [Google Scholar]
  38. Vassalle M. Generation and conduction of impulses in the heart under physiological and pathological conditions. Pharmacol Ther B. 1977;3(1):1–39. doi: 10.1016/0306-039x(77)90002-2. [DOI] [PubMed] [Google Scholar]
  39. Vereecke J., Isenberg G., Carmeliet E. K efflux through inward rectifying K channels in voltage clamped Purkinje fibers. Pflugers Arch. 1980 Apr;384(3):207–217. doi: 10.1007/BF00584555. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES