Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1981 Jun 1;77(6):629–646. doi: 10.1085/jgp.77.6.629

Properties of tetraethylammonium ion-resistant K+ channels in the photoreceptor membrane of the giant barnacle

PMCID: PMC2215445  PMID: 6267163

Abstract

After the offset of illumination, barnacle photoreceptors undergo a large hyperpolarization that lasts seconds or minutes. We studied the mechanisms that generate this afterpotential by recording afterpotentials intracellularly from the medial photoreceptors of the giant barnacle Balanus nubilus. The afterpotential has two components with different time-courses: (a) an earlier component due to an increase in conductance to K+ that is not blocked by extracellular tetraethylammonium ion (TEA+) or 3-aminopyridine (3-AP) and (b) a later component that is sensitive to cardiac glycosides and that requires extracellular K+, suggesting that it is due to an electrogenic Na+ pump. The K+ conductance component increases in amplitude with increasing CA++ concentration and is inhibited by extracellular Co++; the Co++ inhibition can be overcome by increasing the Ca++ concentration. Thus, the K+ conductance component is Ca++ dependent. An afterpotential similar to that evoked by a brief flash of light is generated by depolarization with current in the dark and by eliciting Ca++ action potentials in the presence of TEA+ in the soma, axon, or terminal regions of the photoreceptor. The action potential undershoot is generated by an increase in conductance to K+ that is resistant to TEA+ and 3-AP and inhibited by Co++. The similarity in time-course and pharmacology of the hyperpolarization afterpotentials elicited by (a) a brief flash of light, (b) depolarization with current, and (c) an action potential indicates that Ca++-dependent K+ channels throughout the photoreceptor membrane are responsible for all three hyperpolarizing events.

Full Text

The Full Text of this article is available as a PDF (989.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie R. F., de Weer P. Electric current generated by squid giant axon sodium pump: external K and internal ADP effects. Am J Physiol. 1978 Jul;235(1):C63–C68. doi: 10.1152/ajpcell.1978.235.1.C63. [DOI] [PubMed] [Google Scholar]
  2. Bader C. R., MacLeish P. R., Schwartz E. A. Responses to light of solitary rod photoreceptors isolated from tiger salamander retina. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3507–3511. doi: 10.1073/pnas.75.7.3507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett E. F., Barret J. N. Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones. J Physiol. 1976 Mar;255(3):737–774. doi: 10.1113/jphysiol.1976.sp011306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baumann F., Hadjilazaro B. A depolarizing aftereffect of intense light in the drone visual receptor. Vision Res. 1972 Jan;12(1):17–31. doi: 10.1016/0042-6989(72)90134-4. [DOI] [PubMed] [Google Scholar]
  5. Baylor D. A., Fuortes M. G., O'Bryan P. M. Receptive fields of cones in the retina of the turtle. J Physiol. 1971 Apr;214(2):265–294. doi: 10.1113/jphysiol.1971.sp009432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baylor D. A., Nicholls J. G. After-effects of nerve impulses on signalling in the central nervous system of the leech. J Physiol. 1969 Aug;203(3):571–589. doi: 10.1113/jphysiol.1969.sp008880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Borsellino A., Fuortes M. G., Smith T. G. Visual responses in Limulus. Cold Spring Harb Symp Quant Biol. 1965;30:429–443. doi: 10.1101/sqb.1965.030.01.042. [DOI] [PubMed] [Google Scholar]
  8. Brown H. M., Cornwall M. C. Ionic mechanism of a quasi-stable depolarization in barnacle photoreceptor following red light. J Physiol. 1975 Jul;248(3):579–593. doi: 10.1113/jphysiol.1975.sp010989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown H. M., Hagiwara S., Koike H., Meech R. M. Membrane properties of a barnacle photoreceptor examined by the voltage clamp technique. J Physiol. 1970 Jun;208(2):385–413. doi: 10.1113/jphysiol.1970.sp009127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown J. E., Blinks J. R. Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors. Detection with aequorin. J Gen Physiol. 1974 Dec;64(6):643–665. doi: 10.1085/jgp.64.6.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brown J. E., Lisman J. E. An electrogenic sodium pump in Limulus ventral photoreceptor cells. J Gen Physiol. 1972 Jun;59(6):720–733. doi: 10.1085/jgp.59.6.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brown J. E., Mote M. I. Ionic dependence of reversal voltage of the light response in Limulus ventral photoreceptors. J Gen Physiol. 1974 Mar;63(3):337–350. doi: 10.1085/jgp.63.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edgington D. R., Stuart A. E. Calcium channels in the high resistivity axonal membrane of photoreceptors of the giant barnacle. J Physiol. 1979 Sep;294:433–445. doi: 10.1113/jphysiol.1979.sp012939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fain G. L., Quandt F. N., Bastian B. L., Gerschenfeld H. M. Contribution of a caesium-sensitive conductance increase to the rod photoresponse. Nature. 1978 Mar 30;272(5652):466–469. doi: 10.1038/272467a0. [DOI] [PubMed] [Google Scholar]
  15. Fain G. L., Quandt F. N., Gerschenfeld H. M. Calcium-dependent regenerative responses in rods. Nature. 1977 Oct 20;269(5630):707–710. doi: 10.1038/269707a0. [DOI] [PubMed] [Google Scholar]
  16. Hanani M., Shaw C. A potassium contribution to the response of the barnacle photoreceptor. J Physiol. 1977 Aug;270(1):151–163. doi: 10.1113/jphysiol.1977.sp011943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hudspeth A. J., Poo M. M., Stuart A. E. Passive signal propagation and membrane properties in median photoreceptors of the giant barnacle. J Physiol. 1977 Oct;272(1):25–43. doi: 10.1113/jphysiol.1977.sp012032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hudspeth A. J., Stuart A. E. Morphology and responses to light of the somata, axons, and terminal regions of individual photoreceptors of the giant barnacle. J Physiol. 1977 Oct;272(1):1–23. doi: 10.1113/jphysiol.1977.sp012031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koike H., Brown H. M., Hagiwara S. Hyperpolarization of a barnacle photoreceptor membrane following illumination. J Gen Physiol. 1971 Jun;57(6):723–737. doi: 10.1085/jgp.57.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. 3. A voltage-clamp study. J Gen Physiol. 1969 Sep;54(3):331–351. doi: 10.1085/jgp.54.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neher E., Lux H. D. Differential action of TEA + on two K + -current componentss of a molluscan neurone. Pflugers Arch. 1972;336(2):87–100. doi: 10.1007/BF00592924. [DOI] [PubMed] [Google Scholar]
  22. Ozawa S., Hagiwara S., Nicolaysen K., Stuart A. E. Signal transmission from photoreceptors to ganglion cells in the visual system of the giant barnacle. Cold Spring Harb Symp Quant Biol. 1976;40:563–570. doi: 10.1101/sqb.1976.040.01.052. [DOI] [PubMed] [Google Scholar]
  23. Pepose J. S., Lisman J. E. Voltage-sensitive potassium channels in Limulus ventral photoreceptors. J Gen Physiol. 1978 Jan;71(1):101–120. doi: 10.1085/jgp.71.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rang H. P., Ritchie J. M. On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J Physiol. 1968 May;196(1):183–221. doi: 10.1113/jphysiol.1968.sp008502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ross W. N., Stuart A. E. Voltage sensitive calcium channels in the presynaptic terminals of a decrementally conducting photoreceptor. J Physiol. 1978 Jan;274:173–191. doi: 10.1113/jphysiol.1978.sp012142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schwartz E. A. Electrical properties of the rod syncytium in the retina of the turtle. J Physiol. 1976 May;257(2):379–406. doi: 10.1113/jphysiol.1976.sp011374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stuart A. E., Oertel D. Neuronal properties underlying processing of visual information in the barnacle. Nature. 1978 Sep 28;275(5678):287–290. doi: 10.1038/275287a0. [DOI] [PubMed] [Google Scholar]
  28. Thomas R. C. Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium. J Physiol. 1969 Apr;201(2):495–514. doi: 10.1113/jphysiol.1969.sp008769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thompson S. H. Three pharmacologically distinct potassium channels in molluscan neurones. J Physiol. 1977 Feb;265(2):465–488. doi: 10.1113/jphysiol.1977.sp011725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tomita T. Electrical activity of vertebrate photoreceptors. Q Rev Biophys. 1970 May;3(2):179–222. doi: 10.1017/s0033583500004571. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES