Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 Apr 1;79(4):603–632. doi: 10.1085/jgp.79.4.603

Calcium accumulation by the sarcoplasmic reticulum in two populations of chemically skinned human muscle fibers. Effects of calcium and cyclic AMP

PMCID: PMC2215478  PMID: 6279758

Abstract

In previous efforts to characterize sarcoplasmic reticulum function in human muscles, it has not been possible to distinguish the relative contributions of fast-twitch and slow-twitch fibers. In this study, we have used light scattering and 45Ca to monitor Ca accumulation by the sarcoplasmic reticulum of isolated, chemically skinned human muscle fibers in the presence and absence of oxalate. Oxalate (5 mM) increased the capacity for Ca accumulation by a factor of 35 and made it possible to assess both rate of Ca uptake and relative sarcoplasmic reticulum volume in individual fibers. At a fixed ionized Ca concentration, the rate and maximal capacity (an index of sarcoplasmic reticulum volume) both varied over a wide range, but fibers fell into two distinct groups (fast and slow). Between the two groups, there was a 2- to 2.5-fold difference in oxalate-supported Ca uptake rates, but no difference in average sarcoplasmic reticulum volumes. Intrinsic differences in sarcoplasmic reticulum function (Vmax, K0.5, and n) were sought to account for the distinction between fast and slow groups. In both groups, rate of Ca accumulation increased sigmoidally as [Ca++] was increased from 0.1 to 1 microM. Apparent affinities for Ca++ (K0.5) were similar in the two groups, but slow fibers had a lower Vmax and larger n values. Slow fibers also differed from fast fibers in responding with enhanced Ca uptake upon addition of cyclic AMP (10(-6) M, alone or with protein kinase). Acceleration by cyclic AMP was adequate to account for adrenaline-induced increases in relaxation rates previously observed in human muscles containing mixtures in fast- twitch and slow-twitch fibers.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baloh R., Cancilla P. A. An appraisal of histochemical fiber types in Duchenne muscular dystrophy. Neurology. 1972 Dec;22(12):1243–1252. doi: 10.1212/wnl.22.12.1243. [DOI] [PubMed] [Google Scholar]
  2. Barnard R. J., Edgerton V. R., Furukawa T., Peter J. B. Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers. Am J Physiol. 1971 Feb;220(2):410–414. doi: 10.1152/ajplegacy.1971.220.2.410. [DOI] [PubMed] [Google Scholar]
  3. Bornet E. P., Entman M. L., Van Winkle W. B., Schwartz A., Lehotay D. C., Levey G. S. Cyclic AMP modulation of calcium accumulation by sarcoplasmic reticulum from fast skeletal muscle. Biochim Biophys Acta. 1977 Jul 14;468(2):188–193. doi: 10.1016/0005-2736(77)90113-4. [DOI] [PubMed] [Google Scholar]
  4. Bowman W. C., Nott M. W. Actions of sympathomimetic amines and their antagonists on skeletal muscle. Pharmacol Rev. 1969 Mar;21(1):27–72. [PubMed] [Google Scholar]
  5. Brandt P. W., Cox R. N., Kawai M. Can the binding of Ca2+ to two regulatory sites on troponin C determine the steep pCa/tension relationship of skeletal muscle? Proc Natl Acad Sci U S A. 1980 Aug;77(8):4717–4720. doi: 10.1073/pnas.77.8.4717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Briggs F. N., Poland J. L., Solaro R. J. Relative capabilities of sarcoplasmic reticulum in fast and slow mammalian skeletal muscles. J Physiol. 1977 Apr;266(3):587–594. doi: 10.1113/jphysiol.1977.sp011783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brody I. A. Regulation of isometric contraction in skeletal muscle. Exp Neurol. 1976 Mar;50(3):673–683. doi: 10.1016/0014-4886(76)90036-4. [DOI] [PubMed] [Google Scholar]
  8. Buchthal F., Schmalbruch H. Motor unit of mammalian muscle. Physiol Rev. 1980 Jan;60(1):90–142. doi: 10.1152/physrev.1980.60.1.90. [DOI] [PubMed] [Google Scholar]
  9. Burke R. E., Levine D. N., Salcman M., Tsairis P. Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol. 1974 May;238(3):503–514. doi: 10.1113/jphysiol.1974.sp010540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Canal N., Frattola L., Smirne S. The metabolism of cyclic-3'-5'-adenosine monophosphate (cAMP) in diseased muscle. J Neurol. 1975;208(4):259–265. doi: 10.1007/BF00312801. [DOI] [PubMed] [Google Scholar]
  11. Cerri C., Willner J. H., Rowland L. P. Assay of adenylate cyclase in homogenates of control and Duchenne human skeletal muscle. Clin Chim Acta. 1981 Apr 9;111(2-3):133–146. doi: 10.1016/0009-8981(81)90180-7. [DOI] [PubMed] [Google Scholar]
  12. Close R. I. Dynamic properties of mammalian skeletal muscles. Physiol Rev. 1972 Jan;52(1):129–197. doi: 10.1152/physrev.1972.52.1.129. [DOI] [PubMed] [Google Scholar]
  13. DOWD J. E., RIGGS D. S. A COMPARISON OF ESTIMATES OF MICHAELIS-MENTEN KINETIC CONSTANTS FROM VARIOUS LINEAR TRANSFORMATIONS. J Biol Chem. 1965 Feb;240:863–869. [PubMed] [Google Scholar]
  14. Dunne C. P., Gerlt J. A., Rabinowitz K. W., Wood W. A. The mechanism of action of 5'-adenylic acid-activated threonine dehydrase. IV. Characterization of kinetic effect of adenosine monophosphate. J Biol Chem. 1973 Dec 10;248(23):8189–8199. [PubMed] [Google Scholar]
  15. Eastwood A. B., Wood D. S., Bock K. L., Sorenson M. M. Chemically skinned mammalian skeletal muscle. I. The structure of skinned rabbit psoas. Tissue Cell. 1979;11(3):553–566. doi: 10.1016/0040-8166(79)90062-4. [DOI] [PubMed] [Google Scholar]
  16. Edström L., Nyström B. Histochemical types and sizes of fibres in normal human muscles. A biopsy study. Acta Neurol Scand. 1969;45(3):257–269. doi: 10.1111/j.1600-0404.1969.tb01238.x. [DOI] [PubMed] [Google Scholar]
  17. Eisenberg B. R., Kuda A. M. Retrieval of cryostat section for comparison of histochemistry and quantitative electron microscopy in a muscle fiber. J Histochem Cytochem. 1977 Oct;25(10):1169–1177. doi: 10.1177/25.10.72099. [DOI] [PubMed] [Google Scholar]
  18. Engel W. K. Selective and nonselective susceptibility of muscle fiber types. A new approach to human neuromuscular diseases. Arch Neurol. 1970 Feb;22(2):97–117. doi: 10.1001/archneur.1970.00480200003001. [DOI] [PubMed] [Google Scholar]
  19. Eusebi F., Miledi R., Takahashi T. Calcium transients in mammalian muscles. Nature. 1980 Apr 10;284(5756):560–561. doi: 10.1038/284560a0. [DOI] [PubMed] [Google Scholar]
  20. FANBURG B., GERGELY J. STUDIES ON ADENOSINE TRIPHOSPHATE-SUPPORTED CALCIUM ACCUMULATION BY CARDIAC SUBCELLULAR PARTICLES. J Biol Chem. 1965 Jun;240:2721–2728. [PubMed] [Google Scholar]
  21. Fabiato A., Fabiato F. Cyclic AMP-induced enhancement of calcium accumulation by the sarcoplasmic reticulum with no modification of the sensitivity of the myofilaments to calcium in skinned fibres from a yeast skeletal muscle. Biochim Biophys Acta. 1978 Mar 1;539(2):253–260. doi: 10.1016/0304-4165(78)90012-0. [DOI] [PubMed] [Google Scholar]
  22. Fiehn W., Peter J. B. Properties of the fragmented sarcoplasmic reticulum from fast twitch and slow twitch muscles. J Clin Invest. 1971 Mar;50(3):570–573. doi: 10.1172/JCI106526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ford L. E., Podolsky R. J. Calcium uptake and force development by skinned muscle fibres in EGTA buffered solutions. J Physiol. 1972 May;223(1):1–19. doi: 10.1113/jphysiol.1972.sp009830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fuchs F., Bayuk M. Cooperative binding of calcium to glycerinated skeletal muscle fibers. Biochim Biophys Acta. 1976 Aug 13;440(2):448–455. doi: 10.1016/0005-2728(76)90077-3. [DOI] [PubMed] [Google Scholar]
  25. Galani-Kranias E., Bick R., Schwartz A. Phosphorylation of a 100 000 dalton component and its relationship to calcium transport in sarcoplasmic reticulum from rabbit skeletal muscle. Biochim Biophys Acta. 1980 Apr 3;628(4):438–450. doi: 10.1016/0304-4165(80)90393-1. [DOI] [PubMed] [Google Scholar]
  26. Godt R. E., Maughan D. W. Swelling of skinned muscle fibers of the frog. Experimental observations. Biophys J. 1977 Aug;19(2):103–116. doi: 10.1016/S0006-3495(77)85573-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. HASSELBACH W., MAKINOSE M. [The calcium pump of the "relaxing granules" of muscle and its dependence on ATP-splitting]. Biochem Z. 1961;333:518–528. [PubMed] [Google Scholar]
  28. Harigaya S., Ogawa Y., Sugita H. Calcium binding activity of microsomal fraction of rabbit rad muscle. J Biochem. 1968 Mar;63(3):324–331. [PubMed] [Google Scholar]
  29. Hicks M. J., Shigekawa M., Katz A. M. Mechanism by which cyclic adenosine 3':5'-monophosphate-dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum. Circ Res. 1979 Mar;44(3):384–391. doi: 10.1161/01.res.44.3.384. [DOI] [PubMed] [Google Scholar]
  30. Johnson M. A., Polgar J., Weightman D., Appleton D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci. 1973 Jan;18(1):111–129. doi: 10.1016/0022-510x(73)90023-3. [DOI] [PubMed] [Google Scholar]
  31. Katz A. M. Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamines: an historical review. Adv Cyclic Nucleotide Res. 1979;11:303–343. [PubMed] [Google Scholar]
  32. Katz G. M., Mozo A., Reuben J. P. Filament interaction in intact muscle fibers monitored by light scattering. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4421–4424. doi: 10.1073/pnas.76.9.4421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Katz G. M., Sorenson M. M., Reuben J. P. Filament interaction monitored by light scattering in skinned fibers. J Gen Physiol. 1978 Nov;72(5):651–665. doi: 10.1085/jgp.72.5.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Katz S., Remtulla M. A. Phosphodiesterase protein activator stimulates calcium transport in cardiac microsomal preparations enriched in sarcoplasmic reticulum. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1373–1379. doi: 10.1016/0006-291x(78)91373-6. [DOI] [PubMed] [Google Scholar]
  35. Kirchberger M. A., Chu G. Correlation between protein kinase-mediated stimulation of calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of a 22000 dalton protein. Biochim Biophys Acta. 1976 Feb 6;419(3):559–562. doi: 10.1016/0005-2736(76)90269-8. [DOI] [PubMed] [Google Scholar]
  36. Kirchberger M. A., Tada M. Effects of adenosine 3':5'-monophosphate-dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles. J Biol Chem. 1976 Feb 10;251(3):725–729. [PubMed] [Google Scholar]
  37. Kirchberger M. A., Tada M., Katz A. M. Adenosine 3':5'-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J Biol Chem. 1974 Oct 10;249(19):6166–6173. [PubMed] [Google Scholar]
  38. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  39. Le Peuch C. J., Haiech J., Demaille J. G. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium--calmodulin-dependent phosphorylations. Biochemistry. 1979 Nov 13;18(23):5150–5157. doi: 10.1021/bi00590a019. [DOI] [PubMed] [Google Scholar]
  40. Luff A. R., Atwood H. L. Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscles of the mouse during postnatal development. J Cell Biol. 1971 Nov;51(21):369–383. doi: 10.1083/jcb.51.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mabuchi K., Sréter F. A. Use of cryostat sections for measurement of Ca2+ uptake by sarcoplasmic reticulum. Anal Biochem. 1978 Jun 1;86(2):733–742. doi: 10.1016/0003-2697(78)90801-1. [DOI] [PubMed] [Google Scholar]
  42. Margreth A., Salviati G., Di Mauro S., Turati G. Early biochemical consequences of denervation in fast and slow skeletal muscles and their relationship to neural control over muscle differentiation. Biochem J. 1972 Mar;126(5):1099–1110. doi: 10.1042/bj1261099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Marsden C. D., Meadows J. C. The effect of adrenaline on the contraction of human muscle. J Physiol. 1970 Apr;207(2):429–448. doi: 10.1113/jphysiol.1970.sp009071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Payne C. M., Stern L. Z., Curless R. G., Hannapel L. K. Ultrastructural fiber typing in normal and diseased human muscle. J Neurol Sci. 1975 May;25(1):99–108. doi: 10.1016/0022-510x(75)90190-2. [DOI] [PubMed] [Google Scholar]
  45. SAMAHA F. J., GERGELY J. CA++ UPTAKE AND ATPASE OF HUMAN SARCOPLASMIC RETICULUM. J Clin Invest. 1965 Aug;44:1425–1431. doi: 10.1172/JCI105248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Scarpa A., DiMauro S., Bonilla E., Schotland D. L. Studies of fragmented sarcoplasmic reticulum from human skeletal muscle. Ann Neurol. 1978 Mar;3(3):194–201. doi: 10.1002/ana.410030303. [DOI] [PubMed] [Google Scholar]
  47. Schmalbruch H. The membrane systems in different fibre types of the triceps surae muscle of cat. Cell Tissue Res. 1979 Dec;204(2):187–200. doi: 10.1007/BF00234632. [DOI] [PubMed] [Google Scholar]
  48. Schwartz A., Entman M. L., Kaniike K., Lane L. K., Van Winkle W. B., Bornet E. P. The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle. Effects of cyclic AMP-dependent protein kinase and phosphorylase b kinase. Biochim Biophys Acta. 1976 Feb 19;426(1):57–72. doi: 10.1016/0005-2736(76)90429-6. [DOI] [PubMed] [Google Scholar]
  49. Solaro R. J., Briggs F. N. Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle. Calcium binding. Circ Res. 1974 Apr;34(4):531–540. doi: 10.1161/01.res.34.4.531. [DOI] [PubMed] [Google Scholar]
  50. Sorenson M. M., Reuben J. P., Eastwood A. B., Orentlicher M., Katz G. M. Functional heterogeneity of the sarcoplasmic reticulum within sarcomeres of skinned muscle fibers. J Membr Biol. 1980 Mar 31;53(1):1–17. doi: 10.1007/BF01871168. [DOI] [PubMed] [Google Scholar]
  51. Sreter F. A. Temperature, pH and seasonal dependence of Ca-uptake and ATPase activity of white and red muscle microsomes. Arch Biochem Biophys. 1969 Oct;134(1):25–33. doi: 10.1016/0003-9861(69)90246-x. [DOI] [PubMed] [Google Scholar]
  52. Tada M., Kirchberger M. A., Repke D. I., Katz A. M. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1974 Oct 10;249(19):6174–6180. [PubMed] [Google Scholar]
  53. Tada M., Yamada M., Ohmori F., Kuzuya T., Inui M., Abe H. Transient state kinetic studies of Ca2+-dependent ATPase and calcium transport by cardiac sarcoplasmic reticulum. Effect of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of phospholamban. J Biol Chem. 1980 Mar 10;255(5):1985–1992. [PubMed] [Google Scholar]
  54. Takagi A. Lipid composition of sarcoplasmic reticulum of human skeletal muscle. Biochim Biophys Acta. 1971 Oct 5;248(1):12–20. [PubMed] [Google Scholar]
  55. Van Winkle W. B., Entman M. L., Bornet E. P., Schwartz A. Morphological and biochemical correlates of skeletal muscle contractility in the cat. II. Physiological and biochemical studies. J Cell Physiol. 1978 Oct;97(1):121–135. doi: 10.1002/jcp.1040970111. [DOI] [PubMed] [Google Scholar]
  56. Van Winkle W. B., Schwartz A. Morphological and biochemical correlates of skeletal muscle contractility in the cat. I. Histochemical and electron microscopic studies. J Cell Physiol. 1978 Oct;97(1):99–119. doi: 10.1002/jcp.1040970110. [DOI] [PubMed] [Google Scholar]
  57. Wang T., Grassi de Gende A. O., Schwartz A. Kinetic properties of calcium adenosine triphosphatase of sarcoplasmic reticulum isolated from cat skeletal muscles. A comparison of caudofemoralis (fast), tibialis (mixed), and soleus (slow). J Biol Chem. 1979 Nov 10;254(21):10675–10678. [PubMed] [Google Scholar]
  58. Weber A., Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol. 1968 Nov;52(5):750–759. doi: 10.1085/jgp.52.5.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Weeds A. G., Hall R., Spurway N. C. Characterization of myosin light chains from histochemically identified fibres of rabbit psoas muscle. FEBS Lett. 1975 Jan 1;49(3):320–324. doi: 10.1016/0014-5793(75)80776-9. [DOI] [PubMed] [Google Scholar]
  60. Wiles C. M., Young A., Jones D. A., Edwards R. H. Relaxation rate of constituent muscle-fibre types in human quadriceps. Clin Sci (Lond) 1979 Jan;56(1):47–52. doi: 10.1042/cs0560047. [DOI] [PubMed] [Google Scholar]
  61. Will H., Blanck J., Smettan G., Wollenberger A. A quench-flow kinetic investigation of calcium ion accumulation by isolated cardiac sarcoplasmic reticulum. Dependence of initial velocity on free calcium ion concentration and influence of preincubation with a protein kinase, MgATP, and cyclic AMP. Biochim Biophys Acta. 1976 Nov 9;449(2):295–303. doi: 10.1016/0005-2728(76)90141-9. [DOI] [PubMed] [Google Scholar]
  62. Will H., Schirpke B., Wollenberger A. Stimulation of Ca2+ uptake by cyclic AMP and protein kinase in sarcoplasmic reticulum-rich and sarcolemma-rich microsomal fractions from rabbit heart. Acta Biol Med Ger. 1976;35(5):529–541. [PubMed] [Google Scholar]
  63. Wood D. S. Human skeletal muscle: analysis of Ca2+ regulation in skinned fibers using caffeine. Exp Neurol. 1978 Jan 15;58(2):218–230. doi: 10.1016/0014-4886(78)90135-8. [DOI] [PubMed] [Google Scholar]
  64. Wood D. S., Sorenson M. M., Eastwood A. B., Charash W. E., Reuben J. P. Duchenne dystrophy: abnormal generation of tension and Ca++ regulation in single skinned fibers. Neurology. 1978 May;28(5):447–457. doi: 10.1212/wnl.28.5.447. [DOI] [PubMed] [Google Scholar]
  65. Wood D. S., Zollman J., Reuben J. P., Brandt P. W. Human skeletal muscle: properties of the "chemically skinned%" fiber. Science. 1975 Mar 21;187(4181):1075–1076. doi: 10.1126/science.187.4181.1075. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES