Abstract
Volume, osmolality, and concentrations for Na, Cl, and raffinose have been measured as a function of time in standing droplets within rat intermediate and late proximal tubules. Standing droplet reabsorption proceeds without the development of a measurable osmotic difference across the epithelium. After 140 s of tubular exposure, droplet-to- plasma concentration differences are observed for raffinose, Na, and Cl with the observed Na concentration difference, usually referred to as limiting gradient, being approximately 9 mM. It is possible that a smaller or even no limiting difference would be attained with longer exposure times. Previous values measured for the limiting Na concentration in the rat proximal tubule were determined before the attainment of constant concentrations. Assuming that the Na concentration we measured is the limiting value, we estimate that active NaCl transport accounts for a very small fraction, less than 6%, of the volume reabsorption; using an alternative approach of fitting a theoretical model to our experimental data, active NaCl transport is again estimated to account for only 6% of the total reabsorbate. The previous interpretation that a limiting Na concentration gradient constitutes the most direct evidence for active Na transport may be in error; the gradient we measure can be modeled without incorporating active NaCl transport.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreoli T. E., Schafer J. A., Troutman S. L. Perfusion rate-dependence of transepithelial osmosis in isolated proximal convoluted tubules: estimation of the hydraulic conductance. Kidney Int. 1978 Sep;14(3):263–269. doi: 10.1038/ki.1978.118. [DOI] [PubMed] [Google Scholar]
- Atherton J. C. Comparison of chloride concentration and osmolality in proximal tubular fluid, peritubular capillary plasma and systemic plasma in the rat. J Physiol. 1977 Dec;273(3):765–773. doi: 10.1113/jphysiol.1977.sp012122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg M. B., Green N. Role of monovalent ions in the reabsorption of fluid by isolated perfused proximal renal tubules of the rabbit. Kidney Int. 1976 Sep;10(3):221–228. doi: 10.1038/ki.1976.101. [DOI] [PubMed] [Google Scholar]
- CURRAN P. F., MACINTOSH J. R. A model system for biological water transport. Nature. 1962 Jan 27;193:347–348. doi: 10.1038/193347a0. [DOI] [PubMed] [Google Scholar]
- Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frick A., Rumrich G., Ullrich K. J., Lassiter W. E. Microperfusion study of calcium transport in the proximal tubule of the rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Oct 12;286(2):109–117. doi: 10.1007/BF00363855. [DOI] [PubMed] [Google Scholar]
- Frohnert P. P., Höhmann B., Zwiebel R., Baumann K. Free flow micropuncture studies of glucose transport in the rat nephron. Pflugers Arch. 1970;315(1):66–85. doi: 10.1007/BF00587238. [DOI] [PubMed] [Google Scholar]
- Frömter E., Gessner K. Free-flow potential profile along rat kidney proximal tubule. Pflugers Arch. 1974;351(1):69–83. doi: 10.1007/BF00603512. [DOI] [PubMed] [Google Scholar]
- Frömter E., Rumrich G., Ullrich K. J. Phenomenologic description of Na+, Cl- and HCO-3 absorption from proximal tubules of rat kidney. Pflugers Arch. 1973 Oct 22;343(3):189–220. doi: 10.1007/BF00586045. [DOI] [PubMed] [Google Scholar]
- GERTZ K. H. [Transtubular sodium chloride transport and permeability for nonelectrolytes in the proximal and distal convolution of the rat kidney]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1963;276:336–356. [PubMed] [Google Scholar]
- GIEBISCH G., KLOSE R. M., MALNIC G., SULLIVAN W. J., WINDHAGER E. E. SODIUM MOVEMENT ACROSS SINGLE PERFUSED PROXIMAL TUBULES OF RAT KIDNEYS. J Gen Physiol. 1964 Jul;47:1175–1194. doi: 10.1085/jgp.47.6.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GIEBISCH G., WINDHAGER E. E. RENAL TUBULAR TRANSFER OF SODIUM, CHLORIDE AND POTASSIUM. Am J Med. 1964 May;36:643–669. doi: 10.1016/0002-9343(64)90178-0. [DOI] [PubMed] [Google Scholar]
- GOTTSCHALK C. W., MYLLE M. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am J Physiol. 1959 Apr;196(4):927–936. doi: 10.1152/ajplegacy.1959.196.4.927. [DOI] [PubMed] [Google Scholar]
- Györy A. Z., Lingard J. M. Kinetics of active sodium transport in rat proximal tubules and its variation by cardiac glycosides at zero net volume and ion fluxes. Evidence for a multisite sodium transport system. J Physiol. 1976 May;257(2):257–274. doi: 10.1113/jphysiol.1976.sp011367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Györy A. Z. Reexamination of the split oil droplet method as applied to kidney tubules. Pflugers Arch. 1971;324(4):328–343. doi: 10.1007/BF00592461. [DOI] [PubMed] [Google Scholar]
- Hamburger R. J., Lawson N. L., Schwartz J. H. Response to parathyroid hormone in defined segments of proximal tubule. Am J Physiol. 1976 Feb;230(2):286–290. doi: 10.1152/ajplegacy.1976.230.2.286. [DOI] [PubMed] [Google Scholar]
- Jacobson H. R., Seldin D. W. Proximal tubular reabsorption and its regulation. Annu Rev Pharmacol Toxicol. 1977;17:623–646. doi: 10.1146/annurev.pa.17.040177.003203. [DOI] [PubMed] [Google Scholar]
- KASHGARIAN M., STOCKLE H., GOTTSCHALK C. W., ULLRICH K. J. Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (diabetes insipidus). Pflugers Arch Gesamte Physiol Menschen Tiere. 1963;277:89–106. doi: 10.1007/BF00362394. [DOI] [PubMed] [Google Scholar]
- Kashgarian M., Warren Y., Levitin H. Micropuncture study of proximal renal tubular chloride transport during hypercapnea in the rat. Am J Physiol. 1965 Sep;209(3):655–658. doi: 10.1152/ajplegacy.1965.209.3.655. [DOI] [PubMed] [Google Scholar]
- Lechène C., Morel F., Guinnebault M., De Rouffignac C. Etude par microponction de l'élaboration de l'urine. I. Chez le rat dans différents états de diurèse. Nephron. 1969;6(4):457–477. doi: 10.1159/000179745. [DOI] [PubMed] [Google Scholar]
- Malnic G., Klose R. M., Giebisch G. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am J Physiol. 1966 Sep;211(3):548–559. doi: 10.1152/ajplegacy.1966.211.3.548. [DOI] [PubMed] [Google Scholar]
- Maude D. L. Effects of K and ouabain on fluid transport and cell Na in proximal tubule in vitro. Am J Physiol. 1969 May;216(5):1199–1206. doi: 10.1152/ajplegacy.1969.216.5.1199. [DOI] [PubMed] [Google Scholar]
- Maude D. L. Mechanism of salt transport and some permeability properties of rat proximal tubule. Am J Physiol. 1970 Jun;218(6):1590–1595. doi: 10.1152/ajplegacy.1970.218.6.1590. [DOI] [PubMed] [Google Scholar]
- Morel F., Murayama Y. Simultaneous measurement of undirectional and net sodium fluxes in microperfused rat proximal tubules. Pflugers Arch. 1970;320(1):1–23. doi: 10.1007/BF00588454. [DOI] [PubMed] [Google Scholar]
- Morgan T., Tadokoro M., Martin D., Berliner R. W. Effect of furosemide on Na+ and K+ transport studied by microperfusion of the rat nephron. Am J Physiol. 1970 Jan;218(1):292–297. doi: 10.1152/ajplegacy.1970.218.1.292. [DOI] [PubMed] [Google Scholar]
- Nakajima K., Clapp J. R., Robinson R. R. Limitations of the shrinking-drop micropuncture technique. Am J Physiol. 1970 Aug;219(2):345–357. doi: 10.1152/ajplegacy.1970.219.2.345. [DOI] [PubMed] [Google Scholar]
- Neumann K. H., Rector F. C., Jr Mechanism of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney. J Clin Invest. 1976 Nov;58(5):1110–1118. doi: 10.1172/JCI108563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Persson A. E., Agerup B., Schnermann J. The effect of luminal application of colloids on rat proximal tubular net fluid flux. Kidney Int. 1972 Oct;2(4):203–213. doi: 10.1038/ki.1972.96. [DOI] [PubMed] [Google Scholar]
- Richardson I. W., Licko V., Bartoli E. Mechanisms of salt and water transport in proximal tubule as measured by split drop. J Theor Biol. 1974 Sep;47(1):57–64. doi: 10.1016/0022-5193(74)90098-8. [DOI] [PubMed] [Google Scholar]
- SCHATZMANN H. J., WINDHAGER E. E., SOLOMON A. K. Single proximal tubules of the Necturus kidney. II. Effect of 2, 4-dinitro-phenol and ouabain on water reabsorption. Am J Physiol. 1958 Dec;195(3):570–574. doi: 10.1152/ajplegacy.1958.195.3.570. [DOI] [PubMed] [Google Scholar]
- Schafer J. A., Patlak C. S., Andreoli T. E. A component of fluid absorption linked to passive ion flows in the superficial pars recta. J Gen Physiol. 1975 Oct;66(4):445–471. doi: 10.1085/jgp.66.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schafer J. A., Patlak C. S., Andreoli T. E. Fluid absorption and active and passive ion flows in the rabbit superficial pars recta. Am J Physiol. 1977 Aug;233(2):F154–F167. doi: 10.1152/ajprenal.1977.233.2.F154. [DOI] [PubMed] [Google Scholar]
- Schafer J. A., Patlak C. S., Troutman S. L., Andreoli T. E. Volume absorption in the pars recta. II. Hydraulic conductivity coefficient. Am J Physiol. 1978 Apr;234(4):F340–F348. doi: 10.1152/ajprenal.1978.234.4.F340. [DOI] [PubMed] [Google Scholar]
- Seely J. F., Chirito E. Studies of the electrical potential difference in rat proximal tubule. Am J Physiol. 1975 Jul;229(1):72–80. doi: 10.1152/ajplegacy.1975.229.1.72. [DOI] [PubMed] [Google Scholar]
- Shirley D. G., Poujeol P., Le Grimellec C. Phosphate, calcium and magnesium fluxes into the lumen of the rat proximal convoluted tubule. Pflugers Arch. 1976 Apr 6;362(3):247–254. doi: 10.1007/BF00581177. [DOI] [PubMed] [Google Scholar]
- Turnheim K., Frizzell R. A., Schultz S. G. Effects of anions on amiloride-sensitive, active sodium transport across rabbit colon, in vitro. Evidence for "trans-inhibition" of the Na entry mechanism. J Membr Biol. 1977 Oct 3;37(1):63–84. doi: 10.1007/BF01940924. [DOI] [PubMed] [Google Scholar]
- Ullrich K. J., Rumrich G., Klöss S. Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium- and buffer transport. Pflugers Arch. 1976 Aug 24;364(3):223–228. doi: 10.1007/BF00581759. [DOI] [PubMed] [Google Scholar]
- Viley D., Anagnostopoulos T. Sodium-free fluid reabsorption in Necturus kidney perfused with sodium-free media. Kidney Int. 1973 Oct;4(4):252–258. doi: 10.1038/ki.1973.111. [DOI] [PubMed] [Google Scholar]
- WINDHAGER E. E., GIEBISCH G. Micropuncture study of renal tubular transfer of sodium chloride in the rat. Am J Physiol. 1961 Mar;200:581–590. doi: 10.1152/ajplegacy.1961.200.3.581. [DOI] [PubMed] [Google Scholar]
- Warner R. R., Lechene C. Isosmotic volume reabsorption in rat proximal tubule. J Gen Physiol. 1980 Nov;76(5):559–586. doi: 10.1085/jgp.76.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warner R. R., Strunk T., Lechene C. Analysis of proximal tubule salt and water transport in standing droplets. J Theor Biol. 1979 Apr 21;77(4):453–471. doi: 10.1016/0022-5193(79)90020-1. [DOI] [PubMed] [Google Scholar]
- Weinstein S. W., Szyjewicz J. Early postglomerular plasma concentrations of chloride, sodium, and inulin in the rat kidney. Am J Physiol. 1976 Sep;231(3):822–831. doi: 10.1152/ajplegacy.1976.231.3.822. [DOI] [PubMed] [Google Scholar]
- Wiederholt M., Wiederholt B. Der Einfluss von Dexamethason auf die Wasser- und Elektrolytausscheidung adrenalektomierter Ratten. Pflugers Arch. 1968;302(1):57–78. doi: 10.1007/BF00586782. [DOI] [PubMed] [Google Scholar]
- Windhager E. E., Giebisch G. Proximal sodium and fluid transport. Kidney Int. 1976 Feb;9(2):121–133. doi: 10.1038/ki.1976.16. [DOI] [PubMed] [Google Scholar]
