Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 Jan 1;79(1):1–19. doi: 10.1085/jgp.79.1.1

The T-SR junction in contracting single skeletal muscle fibers

PMCID: PMC2215487  PMID: 7061983

Abstract

The junction between the T system and sarcoplasmic reticulum (SR) of frog skeletal muscle was examined in resting and contracting muscles. Pillars, defined as pairs of electron-opaque lines bounding an electron- lucent interior, were seen spanning the gap between T membrane and SR. Feet, defined previously in images of heavily stained preparations, appear with electron-opaque interiors and as such are distinct from the pillars studied here. Amorphous material was often present in the gap between T membrane and SR. Sometimes the amorphous material appeared as a thin line parallel to the membranes; sometimes it seemed loosely organized at the sites where feet have been reported. Resting single fibers contained 39 +/- 14.3 (mean +/- SD; n = 9 fibers) pillars/micrometer2 of tubule membrane. Single fibers, activated by a potassium-rich solution at 4 degrees C, contained 66 +/- 12.9 pillars/micrometer2 (n = 8) but fibers contracting in response to 2 mM caffeine contained 33 +/- 8.6/micrometer2 (n = 5). Pillar formation occurs when fibers are activated electrically, but not when calcium is released directly from the SR; and so we postulate that pillar formation is a step in excitation-contraction coupling.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caputo C. The effect of low temperature on the excitation-contraction coupling phenomena of frog single muscle fibres. J Physiol. 1972 Jun;223(2):461–482. doi: 10.1113/jphysiol.1972.sp009858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chandler W. K., Rakowski R. F., Schneider M. F. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J Physiol. 1976 Jan;254(2):285–316. doi: 10.1113/jphysiol.1976.sp011233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eisenberg B. R., Gilai A. Structural changes in single muscle fibers after stimulation at a low frequency. J Gen Physiol. 1979 Jul;74(1):1–16. doi: 10.1085/jgp.74.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eisenberg B. R., Mathias R. T., Gilai A. Intracellular localization of markers within injected or cut frog muscle fibers. Am J Physiol. 1979 Jul;237(1):C50–C55. doi: 10.1152/ajpcell.1979.237.1.C50. [DOI] [PubMed] [Google Scholar]
  5. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forbes M. S., Sperelakis N. Membrane systems in skeletal muscle of the lizard Anolis carolinensis. J Ultrastruct Res. 1980 Nov;73(2):245–261. doi: 10.1016/s0022-5320(80)90127-6. [DOI] [PubMed] [Google Scholar]
  7. Franzini-Armstrong C. Membrane particles and transmission at the triad. Fed Proc. 1975 Apr;34(5):1382–1389. [PubMed] [Google Scholar]
  8. Franzini-Armstrong C. Structure of sarcoplasmic reticulum. Fed Proc. 1980 May 15;39(7):2403–2409. [PubMed] [Google Scholar]
  9. Gordon A. M., Huxley A. F., Julian F. J. Tension development in highly stretched vertebrate muscle fibres. J Physiol. 1966 May;184(1):143–169. doi: 10.1113/jphysiol.1966.sp007908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HILL A. V. The mechanics of active muscle. Proc R Soc Lond B Biol Sci. 1953 Mar 11;141(902):104–117. doi: 10.1098/rspb.1953.0027. [DOI] [PubMed] [Google Scholar]
  11. Julian F. J., Sollins M. R., Moss R. L. Sarcomere length non-uniformity in relation to tetanic responses of stretched skeletal muscle fibres. Proc R Soc Lond B Biol Sci. 1978 Jan 24;200(1138):109–116. doi: 10.1098/rspb.1978.0009. [DOI] [PubMed] [Google Scholar]
  12. Kelly D. E., Kuda A. M. Subunits of the triadic junction in fast skeletal muscle as revealed by freeze-fracture. J Ultrastruct Res. 1979 Aug;68(2):220–233. doi: 10.1016/s0022-5320(79)90156-4. [DOI] [PubMed] [Google Scholar]
  13. Kelly D. E. The fine structure of skeletal muscle triad junctions. J Ultrastruct Res. 1969 Oct;29(1):37–49. doi: 10.1016/s0022-5320(69)80054-7. [DOI] [PubMed] [Google Scholar]
  14. Makowski L., Caspar D. L., Phillips W. C., Goodenough D. A. Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol. 1977 Aug;74(2):629–645. doi: 10.1083/jcb.74.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mathias R. T., Levis R. A., Eisenberg R. S. Electrical models of excitation-contraction coupling and charge movement in skeletal muscle. J Gen Physiol. 1980 Jul;76(1):1–31. doi: 10.1085/jgp.76.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Merz W. A. Die Streckenmessung an gerichteten Strukturen im Mikroskop und ihre Anwendung zur Bestimmung von Oberflächen-Volumen-Relationen im Knochengewebe. Mikroskopie. 1968 Feb;22(5):132–142. [PubMed] [Google Scholar]
  17. Oschman J. L., Wall B. J. Calcium binding to intestinal membranes. J Cell Biol. 1972 Oct;55(1):58–73. doi: 10.1083/jcb.55.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PAGE S. G., HUXLEY H. E. FILAMENT LENGTHS IN STRIATED MUSCLE. J Cell Biol. 1963 Nov;19:369–390. doi: 10.1083/jcb.19.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Politoff A. L., Rose S., Pappas G. D. The calcium binding sites of synaptic vesicles of the frog sartorius neuromuscular junction. J Cell Biol. 1974 Jun;61(3):818–823. doi: 10.1083/jcb.61.3.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sakai T., Geffner E. S., Sandow A. Caffeine contracture in muscle with disrupted transverse tubules. Am J Physiol. 1971 Mar;220(3):712–717. doi: 10.1152/ajplegacy.1971.220.3.712. [DOI] [PubMed] [Google Scholar]
  22. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  23. Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. II. The moiety and functional groups possibly involved in the mordanting effect. J Cell Biol. 1976 Sep;70(3):622–633. doi: 10.1083/jcb.70.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Somlyo A. V. Bridging structures spanning the junctioning gap at the triad of skeletal muscle. J Cell Biol. 1979 Mar;80(3):743–750. doi: 10.1083/jcb.80.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sommer J. R., Dolber P. C., Taylor I. Filipin-cholesterol complexes in the sarcoplasmic reticulum of frog skeletal muscle. J Ultrastruct Res. 1980 Sep;72(3):272–285. doi: 10.1016/s0022-5320(80)90064-7. [DOI] [PubMed] [Google Scholar]
  26. Sommer J. R., Wallace N. R., Junker J. The intermediate cisterna of the sarcoplasmic reticulum of skeletal muscle. J Ultrastruct Res. 1980 May;71(2):126–142. doi: 10.1016/s0022-5320(80)90101-x. [DOI] [PubMed] [Google Scholar]
  27. Spray T. L., Waugh R. A., Sommer J. R. Peripheral couplings in adult vertebrate skeletal muscle. Anatomical observations and functional implications. J Cell Biol. 1974 Jul;62(1):223–227. doi: 10.1083/jcb.62.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walker S. M., Schrodt G. R., Edge M. B. The density attached to the inside surface of the apposed sarcoplasmic reticular membrane in vertebrate cardiac and skeletal muscle fibres. J Anat. 1971 Feb;108(Pt 2):217–230. [PMC free article] [PubMed] [Google Scholar]
  29. Yoshioka T., Ohmori K., Sakai T. Ultrastructural features of the sarcoplasmic reticulum during rapid cooling contracture and tetanus in frog skeletal muscle. Jpn J Physiol. 1981;31(1):29–42. doi: 10.2170/jjphysiol.31.29. [DOI] [PubMed] [Google Scholar]
  30. Yu L. P., Hartt J. E., Podolsky R. J. Equatorial x-ray intensities and isometric force levels in frog sartorius muscle. J Mol Biol. 1979 Jul 25;132(1):53–67. doi: 10.1016/0022-2836(79)90495-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES