Abstract
Proton and sulfate inhibition of the obligatory chloride-chloride exchange of human erythrocytes was measured at 0 degrees C to determine their mechanism of reaction with the anion transporter. The proton and sulfate that are co-transported by this mechanism at higher temperatures behaved as nontransported inhibitors at 0 degrees C. We analyzed the data in terms of four molecular mechanisms: (1) HSO4- addition to the transporter; (2) ordered addition with the proton first; (3) ordered addition with the sulfate first; (4) random addition to the transporter. The Dixon plots of 1/MCl vs. [SO4] at different proton concentrations were not parallel. Thus protons and sulfate ions were not mutually exclusive inhibitors. The slope of these Dixon plots was independent of pH above 7.0, which indicates that sulfate could bind to the unprotonated carrier and excludes the first two mechanisms. Protons were inhibitors of chloride flux in the absence of sulfate, which indicates that protons could bind to the unloaded carrier and excludes mechanism 3. The KI for sulfate was 4.35 +/0 0.36 mM. The pK for the protonatable group was 5.03 +/- 0.02. The binding of either a proton or sulfate to the carrier decreased the KI of the other by ninefold. The only simple mechanism consistent with the data is a random-ordered mechanism with more transporters loaded with a sulfate than loaded with a proton at the pH and sulfate concentrations of plasma.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BECKER E. L., HEINEMANN H. O., IGARASHI K., HODLER J. E., GERSHBERG H. Renal mechanisms for the excretion of inorganic sulfate in man. J Clin Invest. 1960 Dec;39:1909–1913. doi: 10.1172/JCI104215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brazy P. C., Gunn R. B. Furosemide inhibition of chloride transport in human red blood cells. J Gen Physiol. 1976 Dec;68(6):583–599. doi: 10.1085/jgp.68.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colombini M., Johnstone R. M. Na+-gradient-stimulated AIB transport in membrane vesicles from Ehrlich ascites cells. J Membr Biol. 1974;18(3-4):315–334. doi: 10.1007/BF01870120. [DOI] [PubMed] [Google Scholar]
- Cuppoletti J., Segel I. H. Kinetic analysis of active membrane transport systems: equations for net velocity and isotope exchange. J Theor Biol. 1975 Sep;53(1):125–144. doi: 10.1016/0022-5193(75)90107-1. [DOI] [PubMed] [Google Scholar]
- Cuppoletti J., Segel I. H. Kinetics of sulfate transport by Penicillium notatum. Interactions of sulfate, protons, and calcium. Biochemistry. 1975 Oct 21;14(21):4712–4718. doi: 10.1021/bi00692a023. [DOI] [PubMed] [Google Scholar]
- Cuppoletti J., Segel I. H. Transinhibition kinetics of the sulfate transport system of Penicillium notatum: analysis based on an iso uni uni velocity equation. J Membr Biol. 1974 Jul 12;17(3):239–252. doi: 10.1007/BF01870185. [DOI] [PubMed] [Google Scholar]
- Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol. 1967 May;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunham P. B., Stewart G. W., Ellory J. C. Chloride-activated passive potassium transport in human erythrocytes. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1711–1715. doi: 10.1073/pnas.77.3.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
- Funder J., Tosteson D. C., Wieth J. O. Effects of bicarbonate on lithium transport in human red cells. J Gen Physiol. 1978 Jun;71(6):721–746. doi: 10.1085/jgp.71.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funder J., Wieth J. O. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J Physiol. 1976 Nov;262(3):679–698. doi: 10.1113/jphysiol.1976.sp011615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grinstein S., McCulloch L., Rothstein A. Transmembrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites. J Gen Physiol. 1979 Apr;73(4):493–514. doi: 10.1085/jgp.73.4.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunn R. B. Co- and counter-transport mechanisms in cell membranes. Annu Rev Physiol. 1980;42:249–259. doi: 10.1146/annurev.ph.42.030180.001341. [DOI] [PubMed] [Google Scholar]
- Gunn R. B., Dalmark M., Tosteson D. C., Wieth J. O. Characteristics of chloride transport in human red blood cells. J Gen Physiol. 1973 Feb;61(2):185–206. doi: 10.1085/jgp.61.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunn R. B., Fröhlich O. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time. J Gen Physiol. 1979 Sep;74(3):351–374. doi: 10.1085/jgp.74.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunn R. B., Fröhlich O. The kinetics of the titratable carrier for anion exchange in erythrocytes. Ann N Y Acad Sci. 1980;341:384–393. doi: 10.1111/j.1749-6632.1980.tb47185.x. [DOI] [PubMed] [Google Scholar]
- Heinz E., Geck P. The efficiency of energetic couping between Na+ flow and amino acid transport in Ehrlich cells-a revised assessment. Biochim Biophys Acta. 1974 Mar 29;339(3):426–431. doi: 10.1016/0005-2736(74)90170-9. [DOI] [PubMed] [Google Scholar]
- Hoffmann N., Thees M., Kinne R. Phosphate transport by isolated renal brush border vesicles. Pflugers Arch. 1976 Mar 30;362(2):147–156. doi: 10.1007/BF00583641. [DOI] [PubMed] [Google Scholar]
- Hunter M. J. A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell. J Physiol. 1971 Oct;218 (Suppl):49P–50P. [PubMed] [Google Scholar]
- Hunter M. J. Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J Physiol. 1977 Jun;268(1):35–49. doi: 10.1113/jphysiol.1977.sp011845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höfer M., Misra P. C. Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Biochem J. 1978 Apr 15;172(1):15–22. doi: 10.1042/bj1720015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimmich G. A., Randles J. Evidence for an intestinal Na+:sugar transport coupling stoichiometry of 2.0. Biochim Biophys Acta. 1980 Mar 13;596(3):439–444. doi: 10.1016/0005-2736(80)90131-5. [DOI] [PubMed] [Google Scholar]
- Knauf P. A., Fuhrmann G. F., Rothstein S., Rothstein A. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol. 1977 Mar;69(3):363–386. doi: 10.1085/jgp.69.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komor E., Tanner W. The hexose-proton cotransport system of chlorella. pH-dependent change in Km values and translocation constants of the uptake system. J Gen Physiol. 1974 Nov;64(5):568–581. doi: 10.1085/jgp.64.5.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ku C. P., Jennings M. L., Passow H. A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red cell membrane. Biochim Biophys Acta. 1979 May 3;553(1):132–141. doi: 10.1016/0005-2736(79)90035-x. [DOI] [PubMed] [Google Scholar]
- Lambert A., Lowe A. G. Chloride/bicarbonate exchange in human erythrocytes. J Physiol. 1978 Feb;275:51–63. doi: 10.1113/jphysiol.1978.sp012177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lauf P. K., Theg B. E. A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1422–1428. doi: 10.1016/0006-291x(80)90445-3. [DOI] [PubMed] [Google Scholar]
- Lever J. E. Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake. J Biol Chem. 1977 Mar 25;252(6):1990–1997. [PubMed] [Google Scholar]
- Lever J. E. The use of membrane vesicles in transport studies. CRC Crit Rev Biochem. 1980 Jan;7(3):187–246. doi: 10.3109/10409238009105462. [DOI] [PubMed] [Google Scholar]
- Lücke H., Haase W., Murer H. Amino acid transport in brush-border-membrane vesicles isolated from human small intestine. Biochem J. 1977 Dec 15;168(3):529–532. doi: 10.1042/bj1680529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OXENDER D. L., CHRISTENSEN H. N. DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem. 1963 Nov;238:3686–3699. [PubMed] [Google Scholar]
- Passow H., Fasold H., Lepke S., Pring M., Schuhmann B. Chemical and enzymatic modification of membrane proteins and anion transport in human red blood cells. Adv Exp Med Biol. 1977;84:353–379. doi: 10.1007/978-1-4684-3279-4_17. [DOI] [PubMed] [Google Scholar]
- Roomans G. M., Kuypers G. A., Theuvenet A. P., Borst-Pauwels G. W. Kinetics of sulfate uptake by yeast. Biochim Biophys Acta. 1979 Feb 20;551(1):197–206. doi: 10.1016/0005-2736(79)90365-1. [DOI] [PubMed] [Google Scholar]
- Salhany J. M., Swanson J. C. Kinetics of passive anion transport across the human erythrocyte membrane. Biochemistry. 1978 Aug 8;17(16):3354–3362. doi: 10.1021/bi00609a028. [DOI] [PubMed] [Google Scholar]
- Schnell K. F., Gerhardt S., Schöppe-Fredenburg A. Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts. J Membr Biol. 1977 Jan 28;30(4):319–350. doi: 10.1007/BF01869675. [DOI] [PubMed] [Google Scholar]
- Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
- Schultz S. G. Sodium-coupled solute transport of small intestine: a status report. Am J Physiol. 1977 Oct;233(4):E249–E254. doi: 10.1152/ajpendo.1977.233.4.E249. [DOI] [PubMed] [Google Scholar]
- Seaston A., Inkson C., Eddy A. A. The absorption of protons with specific amino acids and carbohydrates by yeast. Biochem J. 1973 Aug;134(4):1031–1043. doi: 10.1042/bj1341031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ship S., Shami Y., Breuer W., Rothstein A. Synthesis of tritiated 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid ([3H]DIDS) and its covalent reaction with sites related to anion transport in human red blood cells. J Membr Biol. 1977 May 12;33(3-4):311–323. doi: 10.1007/BF01869522. [DOI] [PubMed] [Google Scholar]
- Slayman C. L., Slayman C. W. Depolarization of the plasma membrane of Neurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proc Natl Acad Sci U S A. 1974 May;71(5):1935–1939. doi: 10.1073/pnas.71.5.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- West I. C., Mitchell P. Stoicheiometry of lactose-H+ symport across the plasma membrane of Escherichia coli. Biochem J. 1973 Mar;132(3):587–592. doi: 10.1042/bj1320587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieth J. O., Brahm J., Funder J. Transport and interactions of anions and protons in the red blood cell membrane. Ann N Y Acad Sci. 1980;341:394–418. doi: 10.1111/j.1749-6632.1980.tb47186.x. [DOI] [PubMed] [Google Scholar]