Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 Feb 1;79(2):283–312. doi: 10.1085/jgp.79.2.283

Irreversible inactivation of red cell chloride exchange with phenylglyoxal, and arginine-specific reagent

PMCID: PMC2215496  PMID: 6276497

Abstract

Chloride exchange in resealed human erythrocyte ghosts can be irreversibly inhibited with phenylglyoxal, a reagent specific for the modification of arginyl residues in proteins. Phenylglyoxal inhibits anion transport in two distinct ways. At 0 degrees C, inhibition is instantaneous and fully reversible, whereas at higher temperature in an alkaline extracellular medium, covalent binding of phenylglyoxal leads to an irreversible inhibition of the transport membranes system. Indiscriminate modification of membrane arginyl residues was prevented by reacting the with phenylglyoxal in an alkaline extracellular medium while maintaining intracellular pH near neutrality. The rate of modification of anion transport depends on phenylglyoxal concentration, pH, temperature, and the presence of anions and reversible inhibitors of the anion transport system in fashions that are fully compatible with the conclusion that phenylglyoxal modifies arginyl residues that are essential for anion binding and translocation. Phenylglyoxal reacts rapidly with the deprotonated form of the reactive groups. It is proposed that the effects of anions and of negatively charged transport inhibitors on the rate of irreversible binding of phenylglyoxal are related to the effects of the anions on a positive interfacial potential. This potential determines the local pH, and thereby the concentration of deprotonated groups, in an exofacial region of the anion transport protein.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong V. W., Sternbach H., Eckstein F. Modification of an essential arginine in Escherichia coli DNA-dependent RNA polymerase. FEBS Lett. 1976 Nov;70(1):48–50. doi: 10.1016/0014-5793(76)80723-5. [DOI] [PubMed] [Google Scholar]
  2. Barzilay M., Cabantchik Z. I. Anion transport in red blood cells. II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids. Membr Biochem. 1979;2(2):255–281. doi: 10.3109/09687687909063867. [DOI] [PubMed] [Google Scholar]
  3. Berghäuser J. A reactive arginine in adenylate kinase. Biochim Biophys Acta. 1975 Aug 26;397(2):370–376. doi: 10.1016/0005-2744(75)90126-6. [DOI] [PubMed] [Google Scholar]
  4. Borders C. L., Jr, Riordan J. F. An essential arginyl residue at the nucleotide binding site of creatine kinase. Biochemistry. 1975 Oct 21;14(21):4699–4704. doi: 10.1021/bi00692a021. [DOI] [PubMed] [Google Scholar]
  5. Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheung S. T., Fonda M. L. Kinetics of the inactivation of Escherichia coli glutamate apodecarboxylase by phenylglyoxal. Arch Biochem Biophys. 1979 Dec;198(2):541–547. doi: 10.1016/0003-9861(79)90529-0. [DOI] [PubMed] [Google Scholar]
  7. Cheung S. T., Fonda M. L. Reaction of phenylglyoxal with arginine. The effect of buffers and pH. Biochem Biophys Res Commun. 1979 Oct 12;90(3):940–947. doi: 10.1016/0006-291x(79)91918-1. [DOI] [PubMed] [Google Scholar]
  8. Dalmark M. Effects of halides and bicarbonate on chloride transport in human red blood cells. J Gen Physiol. 1976 Feb;67(2):223–234. doi: 10.1085/jgp.67.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deuticke B. Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev Physiol Biochem Pharmacol. 1977;78:1–97. doi: 10.1007/BFb0027721. [DOI] [PubMed] [Google Scholar]
  11. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  12. Funder J., Tosteson D. C., Wieth J. O. Effects of bicarbonate on lithium transport in human red cells. J Gen Physiol. 1978 Jun;71(6):721–746. doi: 10.1085/jgp.71.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Funder J., Wieth J. O. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J Physiol. 1976 Nov;262(3):679–698. doi: 10.1113/jphysiol.1976.sp011615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gunn R. B., Dalmark M., Tosteson D. C., Wieth J. O. Characteristics of chloride transport in human red blood cells. J Gen Physiol. 1973 Feb;61(2):185–206. doi: 10.1085/jgp.61.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gunn R. B., Fröhlich O. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time. J Gen Physiol. 1979 Sep;74(3):351–374. doi: 10.1085/jgp.74.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jennings M. L. Proton fluxes associated with erythrocyte membrane anion exchange. J Membr Biol. 1976 Aug 26;28(2-3):187–205. doi: 10.1007/BF01869697. [DOI] [PubMed] [Google Scholar]
  17. Kantrowitz E. R., Lipscomb W. N. An essential residue at the active site of aspartate transcarbamylase. J Biol Chem. 1976 May 10;251(9):2688–2695. [PubMed] [Google Scholar]
  18. Knauf P. A., Rothstein A. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J Gen Physiol. 1971 Aug;58(2):190–210. doi: 10.1085/jgp.58.2.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Krupka R. M., Devés R. Evidence for allosteric inhibition sites in the glucose carrier of erythrocytes. Biochim Biophys Acta. 1980 May 8;598(1):127–133. doi: 10.1016/0005-2736(80)90270-9. [DOI] [PubMed] [Google Scholar]
  20. Ku C. P., Jennings M. L., Passow H. A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red cell membrane. Biochim Biophys Acta. 1979 May 3;553(1):132–141. doi: 10.1016/0005-2736(79)90035-x. [DOI] [PubMed] [Google Scholar]
  21. Passow H. Passive ion permeability of the erythrocyte membrane. Prog Biophys Mol Biol. 1969;19(2):423–467. [PubMed] [Google Scholar]
  22. Passow H., Schnell K. F. Chemical modifiers of passive ion permeability of the erythrocyte membrane. Experientia. 1969 May 15;25(5):460–468. doi: 10.1007/BF01900757. [DOI] [PubMed] [Google Scholar]
  23. Philips M., Pho D. B., Pradel L. A. An essential arginyl residue in yeast hexokinase. Biochim Biophys Acta. 1979 Feb 9;566(2):296–304. doi: 10.1016/0005-2744(79)90033-0. [DOI] [PubMed] [Google Scholar]
  24. Ramjeesingh M., Gaarn A., Rothstein A. The amino acid conjugate formed by the interaction of the anion transport inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) with band 3 protein from human red blood cell membranes. Biochim Biophys Acta. 1981 Feb 20;641(1):173–182. doi: 10.1016/0005-2736(81)90581-2. [DOI] [PubMed] [Google Scholar]
  25. Ramjeesingh M., Gaarn A., Rothstein A. The location of a disulfonic stilbene binding site in band 3, the anion transport protein of the red blood cell membrane. Biochim Biophys Acta. 1980 Jun 20;599(1):127–139. doi: 10.1016/0005-2736(80)90062-0. [DOI] [PubMed] [Google Scholar]
  26. Riordan J. F. Arginyl residues and anion binding sites in proteins. Mol Cell Biochem. 1979 Jul 31;26(2):71–92. doi: 10.1007/BF00232886. [DOI] [PubMed] [Google Scholar]
  27. Riordan J. F., McElvany K. D., Borders C. L., Jr Arginyl residues: anion recognition sites in enzymes. Science. 1977 Mar 4;195(4281):884–886. doi: 10.1126/science.190679. [DOI] [PubMed] [Google Scholar]
  28. Schnell K. F. On the mechanism of inhibition of the sulfate transfer across the human erythrocyte membrane. Biochim Biophys Acta. 1972 Sep 1;282(1):265–276. doi: 10.1016/0005-2736(72)90333-1. [DOI] [PubMed] [Google Scholar]
  29. Ship S., Shami Y., Breuer W., Rothstein A. Synthesis of tritiated 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid ([3H]DIDS) and its covalent reaction with sites related to anion transport in human red blood cells. J Membr Biol. 1977 May 12;33(3-4):311–323. doi: 10.1007/BF01869522. [DOI] [PubMed] [Google Scholar]
  30. Takahashi K. The reaction of phenylglyoxal with arginine residues in proteins. J Biol Chem. 1968 Dec 10;243(23):6171–6179. [PubMed] [Google Scholar]
  31. Weng L., Heinrikson R. L., Westley J. Active site cysteinyl and arginyl residues of rhodanese. A novel formation of disulfide bonds in the active site promoted by phenylglyoxal. J Biol Chem. 1978 Nov 25;253(22):8109–8119. [PubMed] [Google Scholar]
  32. Wieth J. O. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate. J Physiol. 1979 Sep;294:521–539. doi: 10.1113/jphysiol.1979.sp012944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wieth J. O., Bjerrum P. J. Titration of transport and modifier sites in the red cell anion transport system. J Gen Physiol. 1982 Feb;79(2):253–282. doi: 10.1085/jgp.79.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wieth J. O., Brahm J., Funder J. Transport and interactions of anions and protons in the red blood cell membrane. Ann N Y Acad Sci. 1980;341:394–418. doi: 10.1111/j.1749-6632.1980.tb47186.x. [DOI] [PubMed] [Google Scholar]
  35. Wieth J. O. Effect of some monovalent anions on chloride and sulphate permeability of human red cells. J Physiol. 1970 May;207(3):581–609. doi: 10.1113/jphysiol.1970.sp009082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wieth J. O. Paradoxical temperature dependence of sodium and potassium fluxes in human red cells. J Physiol. 1970 May;207(3):563–580. doi: 10.1113/jphysiol.1970.sp009081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zaki L. Inhibition of anion transport across red blood cells with 1,2-cyclohexanedione. Biochem Biophys Res Commun. 1981 Mar 16;99(1):243–251. doi: 10.1016/0006-291x(81)91738-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES