Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 May 1;79(5):791–819. doi: 10.1085/jgp.79.5.791

Diffusional water permeability of human erythrocytes and their ghosts

PMCID: PMC2215506  PMID: 7097244

Abstract

The diffusional water permeability of human red cells and ghosts was determined by measuring the rate of tracer efflux by means of an improved version of the continuous flow tube method, having a time resolution of 2-3 ms. At 25 degrees C, the permeability was 2.4 x 10(3) and 2.9 x 10(3) cm s-1 for red cells and ghosts, respectively. Permeability was affected by neither a change in pH from 5.5 to 9.5, nor by osmolality up to 3.3 osmol. Manganous ions at an extracellular concentration of 19 mM did not change diffusional water permeability, as recently suggested by NMR measurements. A "ground" permeability of 1 x 10(3) cm s-1 was obtained by inhibition with 1 mM of either p- chloromercuribenzoate (PCMB) or p-chloromercuribenzene sulfonate (PCMBS). Inhibition increased temperature dependence of water permeability for red cells and ghosts from 21 to 30 kJ mol-1 to 60 kJ mol-1. Although diffusional water permeability is about one order of magnitude lower than osmotic permeability, inhibition with PCMB and PCMBS, temperature dependence both before and after inhibition, and independence of osmolality showed that diffusional water permeability has qualitative features similar to those reported for osmotic permeability, which indicates that the same properties of the membrane determine both types of transport. It is suggested that the PCMB(S)- sensitive permeability above the ground permeability takes place through the intermediate phase between integral membrane proteins and their surrounding lipids.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrasko J. Water diffusion permeability of human erythrocytes studied by a pulsed gradient NMR technique. Biochim Biophys Acta. 1976 Apr 23;428(2):304–311. doi: 10.1016/0304-4165(76)90038-6. [DOI] [PubMed] [Google Scholar]
  2. BARTON T. C., BROWN D. A. WATER PERMEABILITY OF THE FETAL ERYTHROCYTE. J Gen Physiol. 1964 May;47:839–849. doi: 10.1085/jgp.47.5.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benson E. S., Rossi Fanelli M. R., Giacometti G. M., Rosenberg A., Antonini E. Effects of ligand binding on the rates of hydrogen exchange in myoglobin and hemoglobin. Biochemistry. 1973 Jul 3;12(14):2699–2706. doi: 10.1021/bi00738a024. [DOI] [PubMed] [Google Scholar]
  4. Blum R. M., Forster R. E. The water permeability of erythrocytes. Biochim Biophys Acta. 1970 Jun 2;203(3):410–423. doi: 10.1016/0005-2736(70)90181-1. [DOI] [PubMed] [Google Scholar]
  5. Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brahm J., Wieth J. O. Separative pathways for urea and water, and for chloride in chicken erythrocytes. J Physiol. 1977 Apr;266(3):727–749. doi: 10.1113/jphysiol.1977.sp011790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown P. A., Feinstein M. B., Sha'afi R. I. Membrane proteins related to water transport in human erythrocytes. Nature. 1975 Apr 10;254(5500):523–525. doi: 10.1038/254523a0. [DOI] [PubMed] [Google Scholar]
  8. Cass A., Finkelstein A. Water permeability of thin lipid membranes. J Gen Physiol. 1967 Jul;50(6):1765–1784. doi: 10.1085/jgp.50.6.1765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chien D. Y., Macey R. I. Diffusional water permeability of red cells. Independence on osmolality. Biochim Biophys Acta. 1977 Jan 4;464(1):45–52. doi: 10.1016/0005-2736(77)90369-8. [DOI] [PubMed] [Google Scholar]
  10. Chien S., Sung K. L., Skalak R., Usami S., Tözeren A. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys J. 1978 Nov;24(2):463–487. doi: 10.1016/S0006-3495(78)85395-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Colombe B. W., Macey R. I. Effects of calcium on potassium and water transport in human erythrocyte ghosts. Biochim Biophys Acta. 1974 Sep 6;363(2):226–239. doi: 10.1016/0005-2736(74)90062-5. [DOI] [PubMed] [Google Scholar]
  12. Conlon T., Outhred R. The temperature dependence of erythrocyte water diffusion permeability. Biochim Biophys Acta. 1978 Aug 17;511(3):408–418. doi: 10.1016/0005-2736(78)90277-8. [DOI] [PubMed] [Google Scholar]
  13. Conlon T., Outhred R. Water diffusion permeability of erythrocytes using an NMR technique. Biochim Biophys Acta. 1972 Nov 2;288(2):354–361. doi: 10.1016/0005-2736(72)90256-8. [DOI] [PubMed] [Google Scholar]
  14. Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fabry M. E., Eisenstadt M. Water exchange across red cell membranes: II. Measurements by nuclear magnetic resonance T1, T2, and T12 hybrid relaxation. The effects of osmolarity, cell volume, and medium. J Membr Biol. 1978 Sep 25;42(4):375–398. doi: 10.1007/BF01870357. [DOI] [PubMed] [Google Scholar]
  16. Fabry M. E., Eisenstadt M. Water exchange between red cells and plasma. Measurement by nuclear magnetic relaxation. Biophys J. 1975 Nov;15(11):1101–1110. doi: 10.1016/S0006-3495(75)85886-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Farmer R. E., Macey R. I. Perturbation of red cell volume: rectification of osmotic flow. Biochim Biophys Acta. 1970 Jan 6;196(1):53–65. doi: 10.1016/0005-2736(70)90165-3. [DOI] [PubMed] [Google Scholar]
  18. Funder J., Wieth J. O. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J Physiol. 1976 Nov;262(3):679–698. doi: 10.1113/jphysiol.1976.sp011615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gutknecht J., Tosteson D. C. Ionic peremability of thin lipid membranes. Effects of n-alkyl alcohols, polyvalent cations, and a secondary amine. J Gen Physiol. 1970 Mar;55(3):359–374. doi: 10.1085/jgp.55.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Haest C. W., Kamp D., Plasa G., Deuticke B. Intra- and intermolecular cross-linking of membrane proteins in intact erythrocytes and ghosts by SH-oxidizing agents. Biochim Biophys Acta. 1977 Sep 5;469(2):226–230. doi: 10.1016/0005-2736(77)90186-9. [DOI] [PubMed] [Google Scholar]
  21. Hochmuth R. M., Buxbaum K. L., Evans E. A. Temperature dependence of the viscoelastic recovery of red cell membrane. Biophys J. 1980 Jan;29(1):177–182. doi: 10.1016/S0006-3495(80)85124-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jain M. K., Touissaint D. G., Cordes E. H. Kinetics of water penetration into unsonicated liposomes. Effects of n-alkanols and cholesterol. J Membr Biol. 1973 Dec 6;14(1):1–16. doi: 10.1007/BF01868065. [DOI] [PubMed] [Google Scholar]
  23. Jay A. W. Geometry of the human erythrocyte. I. Effect of albumin on cell geometry. Biophys J. 1975 Mar;15(3):205–222. doi: 10.1016/S0006-3495(75)85812-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jay A. W. Hydraulic permeability coefficients of individual human erythrocytes. Can J Physiol Pharmacol. 1978 Jun;56(3):458–464. doi: 10.1139/y78-068. [DOI] [PubMed] [Google Scholar]
  25. Jennings M. L. Characteristics of CO2-independent pH equilibration in human red blood cells. J Membr Biol. 1978 Jun 9;40(4):365–391. doi: 10.1007/BF01874164. [DOI] [PubMed] [Google Scholar]
  26. Jennings M. L., Solomon A. K. Interaction between phloretin and the red blood cell membrane. J Gen Physiol. 1976 Apr;67(4):381–397. doi: 10.1085/jgp.67.4.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Knauf P. A., Rothstein A. Chemical modification of membranes. II. Permeation paths for sulfhydryl agents. J Gen Physiol. 1971 Aug;58(2):211–223. doi: 10.1085/jgp.58.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Korn A. H., Feairheller S. H., Filachione E. M. Glutaraldehyde: nature of the reagent. J Mol Biol. 1972 Apr 14;65(3):525–529. doi: 10.1016/0022-2836(72)90206-9. [DOI] [PubMed] [Google Scholar]
  29. Kutchai H., Cooper R. A., Forster R. E. Erythrocyte water permeability. The effects of anesthetic alcohols and alterations in the level of membrane cholesterol. Biochim Biophys Acta. 1980 Aug 4;600(2):542–552. doi: 10.1016/0005-2736(80)90455-1. [DOI] [PubMed] [Google Scholar]
  30. LaCelle P. L. Effect of sphering on erythrocyte deformability. Biorheology. 1972 Jun;9(2):51–59. doi: 10.3233/bir-1972-9202. [DOI] [PubMed] [Google Scholar]
  31. Lenard J., Singer S. J. Alteration of the conformation of proteins in red blood cell membranes and in solution by fixatives used in electron microscopy. J Cell Biol. 1968 Apr;37(1):117–121. doi: 10.1083/jcb.37.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Levin S. W., Levin R. L., Solomon A. K., Pandiscio A., Kirkwood D. H. Improved stop-flow apparatus to measure permeability of human red cells and ghosts. J Biochem Biophys Methods. 1980 Nov;3(5):255–272. doi: 10.1016/0165-022x(80)90007-x. [DOI] [PubMed] [Google Scholar]
  33. Macey R. I., Farmer R. E. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta. 1970 Jul 7;211(1):104–106. doi: 10.1016/0005-2736(70)90130-6. [DOI] [PubMed] [Google Scholar]
  34. Macey R. I., Karan D. M., Farmer R. E. Properties of water channels in human red cells. Biomembranes. 1972;3:331–340. doi: 10.1007/978-1-4684-0961-1_22. [DOI] [PubMed] [Google Scholar]
  35. Marfey S. P., Tsai K. H. Cross-linking of phospholipids in human erythrocyte membrane. Biochem Biophys Res Commun. 1975 Jul 8;65(1):31–38. doi: 10.1016/s0006-291x(75)80057-x. [DOI] [PubMed] [Google Scholar]
  36. Mathur-De Vré R. The NMR studies of water in biological systems. Prog Biophys Mol Biol. 1979;35(2):103–134. doi: 10.1016/0079-6107(80)90004-8. [DOI] [PubMed] [Google Scholar]
  37. Morariu V. V., Benga G. Evaluation of a nuclear magnetic resonance technique for the study of water exchange through erythrocyte membranes in normal and pathological subjects. Biochim Biophys Acta. 1977 Sep 19;469(3):301–310. doi: 10.1016/0005-2736(77)90166-3. [DOI] [PubMed] [Google Scholar]
  38. Morariu V. V., Pop V. I., Popescu O., Benga G. Effects of temperature and pH on the water exchange through erythrocyte membranes: nuclear magnetic resonance studies. J Membr Biol. 1981;62(1-2):1–5. doi: 10.1007/BF01870194. [DOI] [PubMed] [Google Scholar]
  39. Naccache P., Sha'afi R. I. Effect of PCMBS on water transfer across biological membranes. J Cell Physiol. 1974 Jun;83(3):449–456. doi: 10.1002/jcp.1040830316. [DOI] [PubMed] [Google Scholar]
  40. Owen J. D., Solomon A. K. Control of nonelectrolyte permeability in red cells. Biochim Biophys Acta. 1972 Dec 1;290(1):414–418. doi: 10.1016/0005-2736(72)90087-9. [DOI] [PubMed] [Google Scholar]
  41. Owen J. D., Steggall M., Eyring E. M. The effect of phloretin on red cell nonelectrolyte permeability. J Membr Biol. 1974;19(1):79–92. doi: 10.1007/BF01869971. [DOI] [PubMed] [Google Scholar]
  42. PAGANELLI C. V., SOLOMON A. K. The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol. 1957 Nov 20;41(2):259–277. doi: 10.1085/jgp.41.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pirkle J. L., Ashley D. L., Goldstein J. H. Pulse nuclear magnetic resonance measurements of water exchange across the erythrocyte membrane employing a low Mn concentration. Biophys J. 1979 Mar;25(3):389–406. doi: 10.1016/S0006-3495(79)85311-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Price H. D., Thompson T. E. Properties of liquid bilayer membranes separating two aqueous phases: temperature dependence of water permeability. J Mol Biol. 1969 May 14;41(3):443–457. doi: 10.1016/0022-2836(69)90287-3. [DOI] [PubMed] [Google Scholar]
  45. Redwood W. R., Haydon D. A. Influence of temperature and membrane composition on the water permeability of lipid bilayers. J Theor Biol. 1969 Jan;22(1):1–8. doi: 10.1016/0022-5193(69)90075-7. [DOI] [PubMed] [Google Scholar]
  46. Redwood W. R., Rall E., Perl W. Red cell membrane permeability deduced from bulk diffusion coefficients. J Gen Physiol. 1974 Dec;64(6):706–729. doi: 10.1085/jgp.64.6.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rich G. T., Sha'afi I., Romualdez A., Solomon A. K. Effect of osmolality on the hydraulic permeability coefficient of red cells. J Gen Physiol. 1968 Dec;52(6):941–954. doi: 10.1085/jgp.52.6.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. SIDEL V. W., SOLOMON A. K. Entrance of water into human red cells under an osmotic pressure gradient. J Gen Physiol. 1957 Nov 20;41(2):243–257. doi: 10.1085/jgp.41.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Schwoch G., Passow H. Preparation and properties of human erythrocyte ghosts. Mol Cell Biochem. 1973 Dec 15;2(2):197–218. doi: 10.1007/BF01795474. [DOI] [PubMed] [Google Scholar]
  50. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  51. Sha'afi R. I., Rich G. T., Sidel V. W., Bossert W., Solomon A. K. The effect of the unstirred layer on human red cell water permeability. J Gen Physiol. 1967 May;50(5):1377–1399. doi: 10.1085/jgp.50.5.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Shapiro D. L., Pasqualini P. Erythrocyte membrane proteins of premature and full-term newborn infants. Pediatr Res. 1978 Mar;12(3):176–178. doi: 10.1203/00006450-197803000-00003. [DOI] [PubMed] [Google Scholar]
  53. Shporer M., Civan M. M. NMR study of -17-O from H2-17-O in human erythrocytes. Biochim Biophys Acta. 1975 Mar 14;385(1):81–87. doi: 10.1016/0304-4165(75)90076-8. [DOI] [PubMed] [Google Scholar]
  54. Sirs J. A. The rate of osmotic influx of water by flexible and inflexible erythrocytes. J Physiol. 1969 Nov;205(1):147–157. doi: 10.1113/jphysiol.1969.sp008957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Solomon A. K. Characterization of biological membranes by equivalent pores. J Gen Physiol. 1968 May;51(5 Suppl):335S+–335S+. [PubMed] [Google Scholar]
  56. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Vieira F. L., Sha'afi R. I., Solomon A. K. The state of water in human and dog red cell membranes. J Gen Physiol. 1970 Apr;55(4):451–466. doi: 10.1085/jgp.55.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. WESTERMAN M. P., PIERCE L. E., JENSEN W. N. A direct method for the quantitative measurement of red cell dimensions. J Lab Clin Med. 1961 May;57:819–824. [PubMed] [Google Scholar]
  59. Wieth J. O., Brahm J., Funder J. Transport and interactions of anions and protons in the red blood cell membrane. Ann N Y Acad Sci. 1980;341:394–418. doi: 10.1111/j.1749-6632.1980.tb47186.x. [DOI] [PubMed] [Google Scholar]
  60. Wood J. G. The effects of glutaraldehyde and osmium on the proteins and lipids of myelin and mitochondria. Biochim Biophys Acta. 1973 Nov 2;329(1):118–127. doi: 10.1016/0304-4165(73)90014-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES