Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 May 1;79(5):775–790. doi: 10.1085/jgp.79.5.775

Effects of cyclic adenosine 3',5'-monophosphate on photoreceptor disc shedding and retinomotor movement. Inhibition of rod shedding and stimulation of cone elongation

PMCID: PMC2215507  PMID: 6284860

Abstract

As a test of the hypothesis that cyclic nucleotides play a role in the regulation of retinomotor movements and disc shedding in the photoreceptor-pigment epithelial complex, we have used an in vitro eyecup preparation that sustains both disc shedding and cone retinomotor movements, Eyecups were prepared in white light from animals in which both shedding and cone movement had been blocked by 4 d of constant-light treatment. In eyecups incubated for 3 h in light, disc shedding was negligible and cones remained in the light-adapted (contracted) position. In eyecups incubated in darkness, however, a massive shedding response (dominated by rod photoreceptors) was induced, and at the same time cone photoreceptors elongated to their dark-adapted position. In eyecups incubated in light dbcAMP promoted cone elongation and thus mimicked darkness; the dbcAMP effect was potentiated by the phosphodiesterase inhibitors papaverine and 3- isobutylmethylxanthine. In eyecups incubated in darkness, on the other hand, both phosphodiesterase inhibitors and dbcAMP reduced the phagosome content of the pigment epithelium. The effects of dbcAMP on the cone elongation and rod shedding appear to be specific in that dbcGMP, adenosine, and adenosine 5'-monophosphate had no significant effect. Our results suggest that cAMP plays a role in the regulation of both retinomotor movements and disc shedding.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basinger S., Hoffman R., Matthes M. Photoreceptor shedding is initiated by light in the frog retina. Science. 1976 Dec 3;194(4269):1074–1076. doi: 10.1126/science.1086510. [DOI] [PubMed] [Google Scholar]
  2. Besharse C., Terrill R. O., Dunis D. A. Light-evoked disc shedding by rod photoreceptors in vitro: relationship to medium bicarbonate concentration. Invest Ophthalmol Vis Sci. 1980 Dec;19(12):1512–1517. [PubMed] [Google Scholar]
  3. Besharse J. C., Hollyfield J. G., Rayborn M. E. Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationship to light. J Cell Biol. 1977 Nov;75(2 Pt 1):507–527. doi: 10.1083/jcb.75.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Besharse J. C., Hollyfield J. G. Turnover of mouse photoreceptor outer segments in constant light and darkness. Invest Ophthalmol Vis Sci. 1979 Oct;18(10):1019–1024. [PubMed] [Google Scholar]
  5. Burnside B., Evans M., Fletcher R. T., Chader G. J. Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3','5-monophosphate. J Gen Physiol. 1982 May;79(5):759–774. doi: 10.1085/jgp.79.5.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burnside B. Thin (actin) and thick (myosinlike) filaments in cone contraction in the teleost retina. J Cell Biol. 1978 Jul;78(1):227–246. doi: 10.1083/jcb.78.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Böhme E., Schultz G. Separation of cyclic nucleotides by thin-layer chromatography on polyethyleneimine cellulose. Methods Enzymol. 1974;38:27–38. doi: 10.1016/0076-6879(74)38007-x. [DOI] [PubMed] [Google Scholar]
  8. Cashel M., Lazzarini R. A., Kalbacher B. An improved method for thin-layer chromatography of nucleotide mixtures containing 32P-labelled orthophosphate. J Chromatogr. 1969 Mar 11;40(1):103–109. doi: 10.1016/s0021-9673(01)96624-5. [DOI] [PubMed] [Google Scholar]
  9. Currie J. R., Hollyfield J. G., Rayborn M. E. Rod outer segments elongate in constant light: darkness is required for normal shedding. Vision Res. 1978;18(8):995–1003. doi: 10.1016/0042-6989(78)90027-5. [DOI] [PubMed] [Google Scholar]
  10. De Vries G. W., Cohen A. I., Lowry O. H., Ferrendelli J. A. Cyclic nucleotides in the cone-dominant ground squirrel retina. Exp Eye Res. 1979 Sep;29(3):315–321. doi: 10.1016/0014-4835(79)90010-1. [DOI] [PubMed] [Google Scholar]
  11. DeVries G. W., Cohen A. I., Hall I. A., Ferrendelli J. A. Cyclic nucleotide levels in normal and biologically fractionated mouse retina: effects of light and dark adaptation. J Neurochem. 1978 Dec;31(6):1345–1351. doi: 10.1111/j.1471-4159.1978.tb06559.x. [DOI] [PubMed] [Google Scholar]
  12. Dedman J. R., Brinkley B. R., Means A. R. Regulation of microfilaments and microtubules by calcium and cyclic AMP. Adv Cyclic Nucleotide Res. 1979;11:131–174. [PubMed] [Google Scholar]
  13. Edwards R. B., Bakshian S. Phagocytosis of outer segments by cultured rat pigment epithelium. Reduction by cyclic AMP and phosphodiesterase inhibitors. Invest Ophthalmol Vis Sci. 1980 Oct;19(10):1184–1188. [PubMed] [Google Scholar]
  14. Farber D. B., Souza D. W., Chase D. G., Lolley R. N. Cyclic nucleotides of cone-dominant retinas. Reduction of cyclic AMP levels by light and by cone degeneration. Invest Ophthalmol Vis Sci. 1981 Jan;20(1):24–31. [PubMed] [Google Scholar]
  15. Fletcher R. T., Chader G. J. Cyclic GMP: control of concentration by light in retinal photoreceptors. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1297–1302. doi: 10.1016/0006-291x(76)91043-3. [DOI] [PubMed] [Google Scholar]
  16. Fung B. K., Hurley J. B., Stryer L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci U S A. 1981 Jan;78(1):152–156. doi: 10.1073/pnas.78.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goldman A. I., Teirstein P. S., O'Brien P. J. The role of ambient lighting in circadian disc shedding in the rod outer segment of the rat retina. Invest Ophthalmol Vis Sci. 1980 Nov;19(11):1257–1267. [PubMed] [Google Scholar]
  18. Goridis C. The effect of flash illumination on the endogenous cyclic GMP content of isolated frog retinae. Exp Eye Res. 1977 Feb;24(2):171–177. doi: 10.1016/0014-4835(77)90257-3. [DOI] [PubMed] [Google Scholar]
  19. Hollyfield J. G., Basinger S. F. Photoreceptor shedding can be initiated within the eye. Nature. 1978 Aug 24;274(5673):794–796. doi: 10.1038/274794a0. [DOI] [PubMed] [Google Scholar]
  20. Hollyfield J. G., Besharse J. C., Rayborn M. E. The effect of light on the quantity of phagosomes in the pigment epithelium. Exp Eye Res. 1976 Dec;23(6):623–635. doi: 10.1016/0014-4835(76)90221-9. [DOI] [PubMed] [Google Scholar]
  21. Hubbell W. L., Bownds M. D. Visual transduction in vertebrate photoreceptors. Annu Rev Neurosci. 1979;2:17–34. doi: 10.1146/annurev.ne.02.030179.000313. [DOI] [PubMed] [Google Scholar]
  22. Ignarro L. J., Cech S. Y. Bidirectional regulation of lysosomal enzyme secretion and phagocytosis in human neutrophils by guanosine 3',5'-monophosphate and adenosine 3',5'-monophosphate. Proc Soc Exp Biol Med. 1976 Mar;151(3):448–452. doi: 10.3181/00379727-151-39232. [DOI] [PubMed] [Google Scholar]
  23. Kilbride P., Ebrey T. G. Light-initiated changes of cyclic guanosine monophosphate levels in the frog retina measured with quick-freezing techniques. J Gen Physiol. 1979 Sep;74(3):415–426. doi: 10.1085/jgp.74.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LaVail M. M. Circadian nature of rod outer segment disc shedding in the rat. Invest Ophthalmol Vis Sci. 1980 Apr;19(4):407–411. [PubMed] [Google Scholar]
  25. LaVail M. M. Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science. 1976 Dec 3;194(4269):1071–1074. doi: 10.1126/science.982063. [DOI] [PubMed] [Google Scholar]
  26. Levinson G., Burnside B. Circadian rhythms in teleost retinomotor movement. A comparison of the effects of circadian rhythm and light condition on cone length. Invest Ophthalmol Vis Sci. 1981 Mar;20(3):294–303. [PubMed] [Google Scholar]
  27. Orr H. T., Lowry O. H., Cohen A. I., Ferrendelli J. A. Distribution of 3':5'-cyclic AMP and 3':5'-cyclic GMP in rabbit retina in vivo: selective effects of dark and light adaptation and ischemia. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4442–4445. doi: 10.1073/pnas.73.12.4442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Posternak T., Weimann G. The preparation of acylated derivatives of cyclic nucleotides. Methods Enzymol. 1974;38:399–409. doi: 10.1016/0076-6879(74)38057-3. [DOI] [PubMed] [Google Scholar]
  29. Smith R. J. Phagocytic release of lysosomal enzymes from guinea pig neutrophils--regulation by corticosteroids, autonomic neurohormones and cyclic nucleotides. Biochem Pharmacol. 1977 Nov 1;26(21):2001–2009. doi: 10.1016/0006-2952(77)90009-0. [DOI] [PubMed] [Google Scholar]
  30. Stossel T. P., Mason R. J., Hartwig J., Vaughan M. Quantitative studies of phagocytosis by polymorphonuclear leukocytes: use of emulsions to measure the initial rate of phagocytosis. J Clin Invest. 1972 Mar;51(3):615–624. doi: 10.1172/JCI106851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Warren R. H., Brunside B. Microtubules in cone myoid elongation in the teleost retina. J Cell Biol. 1978 Jul;78(1):247–259. doi: 10.1083/jcb.78.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wheeler G. L., Bitensky M. W. A light-activated GTPase in vertebrate photoreceptors: regulation of light-activated cyclic GMP phosphodiesterase. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4238–4242. doi: 10.1073/pnas.74.10.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Woodruff M. L., Bownds D., Green S. H., Morrisey J. L., Shedlovsky A. Guanosine 3',5'-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes. J Gen Physiol. 1977 May;69(5):667–679. doi: 10.1085/jgp.69.5.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yee R., Liebman P. A. Light-activated phosphodiesterase of the rod outer segment. Kinetics and parameters of activation and deactivation. J Biol Chem. 1978 Dec 25;253(24):8902–8909. [PubMed] [Google Scholar]
  35. Young R. W. The daily rhythm of shedding and degradation of cone outer segment membranes in the lizard retina. J Ultrastruct Res. 1977 Nov;61(2):172–185. doi: 10.1016/s0022-5320(77)80084-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES