Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 May 1;79(5):759–774. doi: 10.1085/jgp.79.5.759

Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3','5-monophosphate

PMCID: PMC2215510  PMID: 6284859

Abstract

In the teleost retina, the photoreceptors and retinal pigment epithelium (RPE) undergo extensive movements (called retinomotor movements) in response to changes in light conditions and to an endogenous circadian rhythm. Photoreceptor movements serve to reposition the light-receptive outer segments and are effected by changes in inner segment length. Melanin granule movements within the RPE cells provide a movable melanin screen for rod outer segments. In the dark (night), cones elongate, rods contract, and pigment granules aggregate to the base of the RPE cell; in the light (day), these movements are reversed. We report here that treatments that elevate cytoplasmic cyclic adenosine 3',5'-monophosphate (cAMP) provoke retinomotor movements characteristic of nighttime dark adaptation, even in bright light at midday. To illustrate this response, we present a quantitative description of the effects of cyclic nucleotides on cone length in the green sunfish, Lepomis cyanellus. Cone elongation is induced when light-adapted retinas are exposed to exogenous cAMP analogues accompanied by phosphodiesterase (PDE) inhibitors (either by intraocular injection or in retinal organ culture). Cone movements is not affected by cyclic GMP analogies. Dose-response studies indicate that the extent, but not the rate, of cone elongation is proportional to the concentration of exogenous cAMP and analogue presented. As has been reported for other species, we find that levels of cAMP are significantly higher in dark- than in light-adapted green sunfish retinas. On the basis of these observations, we suggest that cAMP plays a role in the light and circadian regulation of teleost cone length.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod J. The pineal gland: a neurochemical transducer. Science. 1974 Jun 28;184(4144):1341–1348. doi: 10.1126/science.184.4144.1341. [DOI] [PubMed] [Google Scholar]
  2. Ball L. A., White C. N. Order of transcription of genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1976 Feb;73(2):442–446. doi: 10.1073/pnas.73.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Besharse J. C., Dunis D. A., Burnside B. Effects of cyclic adenosine 3',5'-monophosphate on photoreceptor disc shedding and retinomotor movement. Inhibition of rod shedding and stimulation of cone elongation. J Gen Physiol. 1982 May;79(5):775–790. doi: 10.1085/jgp.79.5.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Besharse J. C., Hollyfield J. G., Rayborn M. E. Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationship to light. J Cell Biol. 1977 Nov;75(2 Pt 1):507–527. doi: 10.1083/jcb.75.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bitensky M. W., Burstein S. R. Effects of cyclic adenosine monophosphate and melanocyte-stimulating hormone on frog skin in vitro. Nature. 1965 Dec 25;208(5017):1282–1284. doi: 10.1038/2081282a0. [DOI] [PubMed] [Google Scholar]
  6. Corbin J. D., Lincoln T. M. Comparison of cAMP and cGMP-dependent protein kinases. Adv Cyclic Nucleotide Res. 1978;9:159–170. [PubMed] [Google Scholar]
  7. De Vries G. W., Cohen A. I., Lowry O. H., Ferrendelli J. A. Cyclic nucleotides in the cone-dominant ground squirrel retina. Exp Eye Res. 1979 Sep;29(3):315–321. doi: 10.1016/0014-4835(79)90010-1. [DOI] [PubMed] [Google Scholar]
  8. DeVries G. W., Cohen A. I., Hall I. A., Ferrendelli J. A. Cyclic nucleotide levels in normal and biologically fractionated mouse retina: effects of light and dark adaptation. J Neurochem. 1978 Dec;31(6):1345–1351. doi: 10.1111/j.1471-4159.1978.tb06559.x. [DOI] [PubMed] [Google Scholar]
  9. Dedman J. R., Brinkley B. R., Means A. R. Regulation of microfilaments and microtubules by calcium and cyclic AMP. Adv Cyclic Nucleotide Res. 1979;11:131–174. [PubMed] [Google Scholar]
  10. Dowling J. E., Watling K. J. Dopaminergic mechanisms in the teleost retina. II. Factors affecting the accumulation of cyclic AMP in pieces of intact carp retina. J Neurochem. 1981 Feb;36(2):569–579. doi: 10.1111/j.1471-4159.1981.tb01629.x. [DOI] [PubMed] [Google Scholar]
  11. Farber D. B., Brown B. M., Lllley R. N. Cyclic nucleotide dependent protein kinase and the phosphorylation of endogenous proteins of retinal rod outer segments. Biochemistry. 1979 Jan 23;18(2):370–378. doi: 10.1021/bi00569a022. [DOI] [PubMed] [Google Scholar]
  12. Farber D. B., Souza D. W., Chase D. G., Lolley R. N. Cyclic nucleotides of cone-dominant retinas. Reduction of cyclic AMP levels by light and by cone degeneration. Invest Ophthalmol Vis Sci. 1981 Jan;20(1):24–31. [PubMed] [Google Scholar]
  13. Ferrendelli J. A., Cohen A. I. The effects of light and dark adaptation on the levels of cyclic nucleotides in retinas of mice heterozygous for a gene for photoreceptor dystrophy. Biochem Biophys Res Commun. 1976 Nov 22;73(2):421–427. doi: 10.1016/0006-291x(76)90724-5. [DOI] [PubMed] [Google Scholar]
  14. Fletcher R. T., Chader G. J. Cyclic GMP: control of concentration by light in retinal photoreceptors. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1297–1302. doi: 10.1016/0006-291x(76)91043-3. [DOI] [PubMed] [Google Scholar]
  15. Frandsen E. K., Krishna G. A simple ultrasensitive method for the assay of cyclic AMP and cyclic GMP in tissues. Life Sci. 1976 Mar 1;18(5):529–541. doi: 10.1016/0024-3205(76)90331-3. [DOI] [PubMed] [Google Scholar]
  16. Greengard P. Cyclic nucleotides, protein phosphorylation, and neuronal function. Adv Cyclic Nucleotide Res. 1975;5:585–601. [PubMed] [Google Scholar]
  17. Hamm H. E., Menaker M. Retinal rhythms in chicks: circadian variation in melantonin and serotonin N-acetyltransferase activity. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4998–5002. doi: 10.1073/pnas.77.8.4998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hubbell W. L., Bownds M. D. Visual transduction in vertebrate photoreceptors. Annu Rev Neurosci. 1979;2:17–34. doi: 10.1146/annurev.ne.02.030179.000313. [DOI] [PubMed] [Google Scholar]
  19. Klyne M. A., Ali M. A. Retinomotor responses: role of microtubules. Mikroskopie. 1980 Oct;36(7-8):199–212. [PubMed] [Google Scholar]
  20. Krishnan N., Krishna G. A simple and sensitive assay for guanylate cyclase. Anal Biochem. 1976 Jan;70(1):18–31. doi: 10.1016/s0003-2697(76)80043-7. [DOI] [PubMed] [Google Scholar]
  21. LaVail M. M. Circadian nature of rod outer segment disc shedding in the rat. Invest Ophthalmol Vis Sci. 1980 Apr;19(4):407–411. [PubMed] [Google Scholar]
  22. Levinson G., Burnside B. Circadian rhythms in teleost retinomotor movement. A comparison of the effects of circadian rhythm and light condition on cone length. Invest Ophthalmol Vis Sci. 1981 Mar;20(3):294–303. [PubMed] [Google Scholar]
  23. Lolley R. N. Cyclic nucleotide metabolism in the vertebrate retina. Curr Top Eye Res. 1980;2:67–118. [PubMed] [Google Scholar]
  24. Mikuni M., Saito Y., Koyama T., Yamashita I. Circadian variation of cyclic AMP in the rat pineal gland. J Neurochem. 1981 Mar;36(3):1295–1297. doi: 10.1111/j.1471-4159.1981.tb01733.x. [DOI] [PubMed] [Google Scholar]
  25. Novales R. R., Fujii R. A melanin-dispersing effect of cyclic adenosine monophosphate on Fundulus melanophores. J Cell Physiol. 1970 Feb;75(1):133–135. doi: 10.1002/jcp.1040750116. [DOI] [PubMed] [Google Scholar]
  26. Pober J. S., Bitensky M. W. Light-regulated enzymes of vertebrate retinal rods. Adv Cyclic Nucleotide Res. 1979;11:265–301. [PubMed] [Google Scholar]
  27. Rasmussen H., Goodman D. B. Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev. 1977 Jul;57(3):421–509. doi: 10.1152/physrev.1977.57.3.421. [DOI] [PubMed] [Google Scholar]
  28. Redfern N., Israel P., Bergsma D., Robison W. G., Jr, Whikehart D., Chader G. Neural retinal and pigment epithelial cells in culture: patterns of differentiation and effects of prostaglandins and cyclic-AMP on pigmentation. Exp Eye Res. 1976 May;22(5):559–568. doi: 10.1016/0014-4835(76)90192-5. [DOI] [PubMed] [Google Scholar]
  29. Roisen F. J., Murphy R. A., Pichichero M. E., Braden W. G. Cyclic adenosine monophosphate stimulation of axonal elongation. Science. 1972 Jan 7;175(4017):73–74. doi: 10.1126/science.175.4017.73. [DOI] [PubMed] [Google Scholar]
  30. Romero J. A., Axelrod J. Regulation of sensitivity to beta-adrenergic stimulation in induction of pineal N-acetyltransferase. Proc Natl Acad Sci U S A. 1975 May;72(5):1661–1665. doi: 10.1073/pnas.72.5.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Scheid C. R., Honeyman T. W., Fay F. S. Mechanism of beta-adrenergic relaxation of smooth muscle. Nature. 1979 Jan 4;277(5691):32–36. doi: 10.1038/277032a0. [DOI] [PubMed] [Google Scholar]
  32. Shapiro D. L. Morphological and biochemical alterations in foetal rat brain cells cultured in the presence of monobutyryl cyclic AMP. Nature. 1973 Jan 19;241(5386):203–204. doi: 10.1038/241203a0. [DOI] [PubMed] [Google Scholar]
  33. Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
  34. Weiss B., Strada S. J. Neuroendocrine control of the cyclic AMP system of brain and pineal gland. Adv Cyclic Nucleotide Res. 1972;1:357–374. [PubMed] [Google Scholar]
  35. Werblin F. S. Transmission along and between rods in the tiger salamander retina. J Physiol. 1978 Jul;280:449–470. doi: 10.1113/jphysiol.1978.sp012394. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES