Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1983 Jun 1;81(6):909–925. doi: 10.1085/jgp.81.6.909

Cation-coupled chloride influx in squid axon. Role of potassium and stoichiometry of the transport process

PMCID: PMC2215554  PMID: 6875510

Abstract

Evidence is presented showing that the Cl- uptake process in the squid giant axon is tightly coupled not only to Na+ uptake but also to K+ uptake. Thus, removal of external K+ causes both Cl- and Na+ influxes to be reduced, particularly when [Cl-]i is low, that is, under conditions previously shown to be optimal for Cl-/Na+-coupled influx. In addition, there exists a ouabain-insensitive K+ influx, which depends on the presence of external Cl- and Na+, is inversely proportional to [Cl-]i, and is blocked by furosemide/bumetanide. Finally, this ouabain-insensitive K+ influx appears to require the presence of cellular ATP. The stoichiometry of the coupled transport process was measured using a double-labeling technique combining in the same axon either 36Cl and 42K or 22Na and 42K. The stoichiometry of the flux changes occurring in response either to varying [Cl-]i between 150 and 0 mM or to treatment with 0.3 mM furosemide is, in both cases, approximately 3:2:1 (Cl-/Na+/K+). Although these fluxes require ATP, they are not inhibited by 3 mM vanadate. In addition, treatment with DIDS has no effect on the fluxes.

Full Text

The Full Text of this article is available as a PDF (943.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiton J. F., Chipperfield A. R., Lamb J. F., Ogden P., Simmons N. L. Occurrence of passive furosemide-sensitive transmembrane potassium transport in cultured cells. Biochim Biophys Acta. 1981 Sep 7;646(3):389–398. doi: 10.1016/0005-2736(81)90307-2. [DOI] [PubMed] [Google Scholar]
  2. Boron W. F., Russell J. M. Stoichiometry and ion dependencies of the intracellular-pH-regulating mechanism in squid giant axons. J Gen Physiol. 1983 Mar;81(3):373–399. doi: 10.1085/jgp.81.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brinley F. J., Jr, Mullins L. J. Sodium extrusion by internally dialyzed squid axons. J Gen Physiol. 1967 Nov;50(10):2303–2331. doi: 10.1085/jgp.50.10.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dunham P. B., Stewart G. W., Ellory J. C. Chloride-activated passive potassium transport in human erythrocytes. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1711–1715. doi: 10.1073/pnas.77.3.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ellory J. C., Dunham P. B., Logue P. J., Stewart G. W. Anion-dependent cation transport in erythrocytes. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):483–495. doi: 10.1098/rstb.1982.0146. [DOI] [PubMed] [Google Scholar]
  6. Garrahan P. J., Glynn I. M. The sensitivity of the sodium pump to external sodium. J Physiol. 1967 Sep;192(1):175–188. doi: 10.1113/jphysiol.1967.sp008295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geck P., Pietrzyk C., Burckhardt B. C., Pfeiffer B., Heinz E. Electrically silent cotransport on Na+, K+ and Cl- in Ehrlich cells. Biochim Biophys Acta. 1980 Aug 4;600(2):432–447. doi: 10.1016/0005-2736(80)90446-0. [DOI] [PubMed] [Google Scholar]
  8. Greger R., Schlatter E. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 1981 Nov;392(1):92–94. doi: 10.1007/BF00584588. [DOI] [PubMed] [Google Scholar]
  9. Haas M., Schmidt W. F., 3rd, McManus T. J. Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na + K + 2Cl] Co-transport. J Gen Physiol. 1982 Jul;80(1):125–147. doi: 10.1085/jgp.80.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KEYNES R. D. CHLORIDE IN THE SQUID GIANT AXON. J Physiol. 1963 Dec;169:690–705. doi: 10.1113/jphysiol.1963.sp007289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mullins L. J., Brinley F. J., Jr Potassium fluxes in dialyzed squid axons. J Gen Physiol. 1969 Jun;53(6):704–740. doi: 10.1085/jgp.53.6.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Musch M. W., Orellana S. A., Kimberg L. S., Field M., Halm D. R., Krasny E. J., Jr, Frizzell R. A. Na+-K+-Cl- co-transport in the intestine of a marine teleost. Nature. 1982 Nov 25;300(5890):351–353. doi: 10.1038/300351a0. [DOI] [PubMed] [Google Scholar]
  13. Nadarajah A., Leese B., Joplin G. F. Triton X-100 scintillant for counting calcium-45 in biological fluids. Int J Appl Radiat Isot. 1969 Oct;20(10):733–735. doi: 10.1016/0020-708x(69)90071-4. [DOI] [PubMed] [Google Scholar]
  14. Russell J. M. ATP-Dependent chloride influx into internally dialyzed squid giant axons. J Membr Biol. 1976 Sep 17;28(4):335–349. doi: 10.1007/BF01869704. [DOI] [PubMed] [Google Scholar]
  15. Russell J. M. Anion transport mechanisms in neurons. Ann N Y Acad Sci. 1980;341:510–523. doi: 10.1111/j.1749-6632.1980.tb47195.x. [DOI] [PubMed] [Google Scholar]
  16. Russell J. M. Chloride and sodium influx: a coupled uptake mechanism in the squid giant axon. J Gen Physiol. 1979 Jun;73(6):801–818. doi: 10.1085/jgp.73.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schmidt W. F., 3rd, McManus T. J. Ouabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response. J Gen Physiol. 1977 Jul;70(1):99–121. doi: 10.1085/jgp.70.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Warnock D. G., Eveloff J. NaCl entry mechanisms in the luminal membrane of the renal tubule. Am J Physiol. 1982 Jun;242(6):F561–F574. doi: 10.1152/ajprenal.1982.242.6.F561. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES