Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1983 Jun 1;81(6):887–908. doi: 10.1085/jgp.81.6.887

Multiple-site optical recording of membrane potential from a salivary gland. Interaction of synaptic and electrotonic excitation

PMCID: PMC2215556  PMID: 6875509

Abstract

The interaction between synaptic and electronic excitation of cells from the salivary gland of the snail Helisoma trivolvis was studied using a voltage-sensitive merocyanine dye. Linear and square photodiode matrix arrays were used to record simultaneously the response to neuronal stimulation of 15-25 separate regions of the gland. Laterally opposed acini exhibited highly synchronous electrical activity, which suggested a correspondingly high degree of electrical coupling. In the longitudinal direction, coupling appeared weaker. The onset of depolarization after neuronal stimulation was progressively delayed along the longitudinal gland axis, in agreement with the measured conduction velocity of the presynaptic nerve spike. In most instances, neuronal stimulation directly activated a regenerative gland response (action potential) at the junction between the anterior and central duct. Excitation of distal gland regions was usually mediated by electronic spread from active, more proximal gland regions. Occasionally, "collisions" between excitatory waves traveling in opposite directions were observed.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahls F., Kater S. B., Joyner R. W. Neuronal mechanisms for bilateral coordination of salivary gland activity in Helisoma. J Neurobiol. 1980 Jul;11(4):365–379. doi: 10.1002/neu.480110404. [DOI] [PubMed] [Google Scholar]
  2. Cohen L. B., Salzberg B. M. Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol. 1978;83:35–88. doi: 10.1007/3-540-08907-1_2. [DOI] [PubMed] [Google Scholar]
  3. Dillon S., Morad M. A new laser scanning system for measuring action potential propagation in the heart. Science. 1981 Oct 23;214(4519):453–456. doi: 10.1126/science.6974891. [DOI] [PubMed] [Google Scholar]
  4. Fujii S., Hirota A., Kamino K. Action potential synchrony in embryonic precontractile chick heart: optical monitoring with potentiometric dyes. J Physiol. 1981;319:529–541. doi: 10.1113/jphysiol.1981.sp013924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ginsborg B. L., House C. R., Silinsky E. M. Conductance changes associated with the secretory potential in the cockroach salivary gland. J Physiol. 1974 Feb;236(3):723–731. doi: 10.1113/jphysiol.1974.sp010462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grinvald A., Cohen L. B., Lesher S., Boyle M. B. Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode array. J Neurophysiol. 1981 May;45(5):829–840. doi: 10.1152/jn.1981.45.5.829. [DOI] [PubMed] [Google Scholar]
  8. Iwatsuki N., Petersen O. H. Electrical coupling and uncoupling of exocrine acinar cells. J Cell Biol. 1978 Nov;79(2 Pt 1):533–545. doi: 10.1083/jcb.79.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kagayama M., Nishiyama A. Membrane potential and input resistance in acinar cells from cat and rabbit submaxillary glands in vivo: effects of autonomic nerve stimulation. J Physiol. 1974 Oct;242(1):157–172. doi: 10.1113/jphysiol.1974.sp010699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kater S. B., Galvin N. J. Physiological and morphological evidence for coupling in mouse salivary gland acinar cells. J Cell Biol. 1978 Oct;79(1):20–26. doi: 10.1083/jcb.79.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kater S. B., Murphy A. D., Rued J. R. Control of the salivary glands of Helisoma by identified neurones. J Exp Biol. 1978 Feb;72:91–106. doi: 10.1242/jeb.72.1.91. [DOI] [PubMed] [Google Scholar]
  12. Kater S. B., Rued J. R., Murphy A. D. Propagation of action potentials through electrotonic junctions in the salivary glands of the pulmonate mollusc, Helisoma trivolvis. J Exp Biol. 1978 Feb;72:77–90. doi: 10.1242/jeb.72.1.77. [DOI] [PubMed] [Google Scholar]
  13. LUNDBERG A. The electrophysiology of the submaxillary gland of the cat. Acta Physiol Scand. 1955 Dec 22;35(1):1–25. doi: 10.1111/j.1748-1716.1955.tb01258.x. [DOI] [PubMed] [Google Scholar]
  14. Loewenstein W. R. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981 Oct;61(4):829–913. doi: 10.1152/physrev.1981.61.4.829. [DOI] [PubMed] [Google Scholar]
  15. Mackie G. O. Propagated spikes and secretion in a coelenterate glandular epithelium. J Gen Physiol. 1976 Sep;68(3):313–325. doi: 10.1085/jgp.68.3.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Petersen O. H., Ueda N. Pancreatic acinar cells: the role of calcium in stimulus-secretion coupling. J Physiol. 1976 Jan;254(3):583–606. doi: 10.1113/jphysiol.1976.sp011248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pooler J. Photodynamic alteration of sodium currents in lobster axons. J Gen Physiol. 1972 Oct;60(4):367–387. doi: 10.1085/jgp.60.4.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roberts M. L., Iwatsuki N., Petersen O. H. Parotid acinar cells: ionic dependence of acetylcholine-evoked membrane potential changes. Pflugers Arch. 1978 Sep 6;376(2):159–167. doi: 10.1007/BF00581579. [DOI] [PubMed] [Google Scholar]
  19. Salzberg B. M., Grinvald A., Cohen L. B., Davila H. V., Ross W. N. Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J Neurophysiol. 1977 Nov;40(6):1281–1291. doi: 10.1152/jn.1977.40.6.1281. [DOI] [PubMed] [Google Scholar]
  20. Senseman D. M., Salzberg B. M. Electrical activity in an exocrine gland: optical recording with a potentiometric dye. Science. 1980 Jun 13;208(4449):1269–1271. doi: 10.1126/science.7375937. [DOI] [PubMed] [Google Scholar]
  21. Simpson I., Rose B., Loewenstein W. R. Size limit of molecules permeating the junctional membrane channels. Science. 1977 Jan 21;195(4275):294–296. doi: 10.1126/science.831276. [DOI] [PubMed] [Google Scholar]
  22. WEIDMANN S. The electrical constants of Purkinje fibres. J Physiol. 1952 Nov;118(3):348–360. doi: 10.1113/jphysiol.1952.sp004799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Waggoner A. S. Dye indicators of membrane potential. Annu Rev Biophys Bioeng. 1979;8:47–68. doi: 10.1146/annurev.bb.08.060179.000403. [DOI] [PubMed] [Google Scholar]
  24. Westenfelder C., Hamburger R. K., Garcia M. E. Effect of vanadate on renal tubular function in rats. Am J Physiol. 1981 Jun;240(6):F522–F529. doi: 10.1152/ajprenal.1981.240.6.F522. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES