Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1983 Jun 1;81(6):785–803. doi: 10.1085/jgp.81.6.785

Amiloride-sensitive trypsinization of apical sodium channels. Analysis of hormonal regulation of sodium transport in toad bladder

PMCID: PMC2215559  PMID: 6308125

Abstract

Incubation of the mucosal surface of the toad urinary bladder with trypsin (1 mg/ml) irreversibly decreased the short-circuit current to 50% of the initial value. This decrease was accompanied by a proportionate decrease in apical Na permeability, estimated from the change in amiloride-sensitive resistance in depolarized preparations. In contrast, the paracellular resistance was unaffected by trypsinization. Amiloride, a specific blocker of the apical Na channels, prevented inactivation by trypsin. Inhibition of Na transport by substitution of mucosal Na, however, had no effect on the response to trypsin. Trypsinization of the apical membrane was also used to study regulation of Na transport by anti-diuretic hormone (ADH) and aldosterone. Prior exposure of the apical surface to trypsin did not reduce the response to ADH, which indicates that the ADH-induced Na channels were inaccessible to trypsin before addition of the hormone. On the other hand, stimulation of short-circuit current by aldosterone or pyruvate (added to substrate-depleted, aldosterone-repleted bladders) was substantially reduced by prior trypsinization of the apical surface. Thus, the increase in apical Na permeability elicited by aldosterone or substrate involves activation of Na channels that are continuously present in the apical membrane in nonconductive but trypsin-sensitive forms.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli T. E., Schafer J. A. Mass transport across cell membranes: the effects of antidiuretic hormone on water and solute flows in epithelia. Annu Rev Physiol. 1976;38:451–500. doi: 10.1146/annurev.ph.38.030176.002315. [DOI] [PubMed] [Google Scholar]
  2. Chase H. S., Jr, Al-Awqati Q. Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium: role of sodium-calcium exchange in the basolateral membrane. J Gen Physiol. 1981 Jun;77(6):693–712. doi: 10.1085/jgp.77.6.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crabbé J. Hormonal influences on transepithelial sodium transport: aldosterone vs. insulin. J Steroid Biochem. 1972 Feb;3(2):229–235. doi: 10.1016/0022-4731(72)90054-4. [DOI] [PubMed] [Google Scholar]
  4. Cuthbert A. W., Painter M. E. Modifications of the responses to antidiuretic hormone by hydrolytic enzymes. J Pharm Pharmacol. 1971 Apr;23(4):262–269. doi: 10.1111/j.2042-7158.1971.tb08655.x. [DOI] [PubMed] [Google Scholar]
  5. DeLorenzo R. J., Walton K. G., Curran P. F., Greengard P. Regulation of phosphorylation of a specific protein in toad-bladder membrane by antidiuretic hormone and cyclic AMP, and its possible relationship to membrane permeability changes. Proc Natl Acad Sci U S A. 1973 Mar;70(3):880–884. doi: 10.1073/pnas.70.3.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EDELMAN I. S., BOGOROCH R., PORTER G. A. ON THE MECHANISM OF ACTION OF ALDOSTERONE ON SODIUM TRANSPORT: THE ROLE OF PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1963 Dec;50:1169–1177. doi: 10.1073/pnas.50.6.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FRAZIER H. S., DEMPSEY E. F., LEAF A. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J Gen Physiol. 1962 Jan;45:529–543. doi: 10.1085/jgp.45.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Finn A. L., Krug E. F. Control of vasopressin stimulation of sodium transport in the toad bladder. Am J Physiol. 1973 May;224(5):1018–1023. doi: 10.1152/ajplegacy.1973.224.5.1018. [DOI] [PubMed] [Google Scholar]
  9. Frizzell R. A., Schultz S. G. Effect of aldosterone on ion transport by rabbit colon in vitro. J Membr Biol. 1978 Feb 6;39(1):1–26. doi: 10.1007/BF01872752. [DOI] [PubMed] [Google Scholar]
  10. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  11. Lewis S. A., Eaton D. C., Diamond J. M. The mechanism of Na+ transport by rabbit urinary bladder. J Membr Biol. 1976 Aug 27;28(1):41–70. doi: 10.1007/BF01869690. [DOI] [PubMed] [Google Scholar]
  12. Li J. H., Palmer L. G., Edelman I. S., Lindemann B. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone. J Membr Biol. 1982;64(1-2):77–89. doi: 10.1007/BF01870770. [DOI] [PubMed] [Google Scholar]
  13. Masur S. K., Holtzman E., Walter R. Hormone-stimulated exocytosis in the toad urinary bladder. Some possible implications for turnover of surface membranes. J Cell Biol. 1972 Jan;52(1):211–219. doi: 10.1083/jcb.52.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Palmer L. G., Edelman I. S. Control of apical sodium permeability in the toad urinary bladder by aldosterone. Ann N Y Acad Sci. 1981;372:1–14. doi: 10.1111/j.1749-6632.1981.tb15453.x. [DOI] [PubMed] [Google Scholar]
  15. Palmer L. G., Edelman I. S., Lindemann B. Current-voltage analysis of apical sodium transport in toad urinary bladder: effects of inhibitors of transport and metabolism. J Membr Biol. 1980 Nov 15;57(1):59–71. doi: 10.1007/BF01868986. [DOI] [PubMed] [Google Scholar]
  16. Palmer L. G., Li J. H., Lindemann B., Edelman I. S. Aldosterone control of the density of sodium channels in the toad urinary bladder. J Membr Biol. 1982;64(1-2):91–102. doi: 10.1007/BF01870771. [DOI] [PubMed] [Google Scholar]
  17. Park C. S., Fanestil D. D. Covalent modification and inhibition of an epithelial sodium channel by tyrosine-reactive reagents. Am J Physiol. 1980 Sep;239(3):F299–F306. doi: 10.1152/ajprenal.1980.239.3.F299. [DOI] [PubMed] [Google Scholar]
  18. Sharp G. W., Leaf A. Mechanism of action of aldosterone. Physiol Rev. 1966 Oct;46(4):593–633. doi: 10.1152/physrev.1966.46.4.593. [DOI] [PubMed] [Google Scholar]
  19. Spooner P. M., Edelman I. S. Effects of aldosterone on Na+ transport in the toad bladder. I. Glycolysis and lactate production under aerobic conditions. Biochim Biophys Acta. 1976 Oct 22;444(3):653–662. doi: 10.1016/0304-4165(76)90312-3. [DOI] [PubMed] [Google Scholar]
  20. Spooner P. M., Edelman I. S. Further studies on the effect of aldosterone on electrical resistance of toad bladder. Biochim Biophys Acta. 1975 Oct 6;406(2):304–314. doi: 10.1016/0005-2736(75)90012-7. [DOI] [PubMed] [Google Scholar]
  21. Taylor A., Windhager E. E. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am J Physiol. 1979 Jun;236(6):F505–F512. doi: 10.1152/ajprenal.1979.236.6.F505. [DOI] [PubMed] [Google Scholar]
  22. Yorio T., Bentley P. J. Phospholipase A and the mechanism of action of aldosterone. Nature. 1978 Jan 5;271(5640):79–81. doi: 10.1038/271079a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES