Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1983 Jun 1;81(6):829–844. doi: 10.1085/jgp.81.6.829

Voltage dependence of intramembrane charge movement and conductance activation of batrachotoxin-modified sodium channels in frog node of Ranvier

PMCID: PMC2215561  PMID: 6308127

Abstract

Sodium current and sodium channel intramembrane gating charge movement (Q) were monitored in voltage-clamped frog node of Ranvier after modification of all sodium channels by batrachotoxin (BTX). BTX caused an approximately threefold increase in steepness of the Q vs. voltage relationship and a 50-mV negative shift in its midpoint. The maximum amount of intramembrane charge was virtually identical before and after BTX treatment. BTX treatment eliminated the charge immobilization observed in untreated nodes after relatively long depolarizing pulses and slowed the rate of OFF charge movement after a pulse. After BTX treatment, the voltage dependence of charge movement was the same as the steady-state voltage dependence of sodium conductance activation. The observations are consistent with the hypothesis that BTX induces an aggregation of the charged gating particles associated with each channel and causes them to move as a unit having approximately three times the average valence of the individual particles. Movement of this single aggregated unit would open the BTX-modified sodium channel.

Full Text

The Full Text of this article is available as a PDF (888.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albuquerque E. X. The mode of action of batrachotoxin. Fed Proc. 1972 May-Jun;31(3):1133–1138. [PubMed] [Google Scholar]
  2. Armstrong C. M., Bezanilla F. Currents related to movement of the gating particles of the sodium channels. Nature. 1973 Apr 13;242(5398):459–461. doi: 10.1038/242459a0. [DOI] [PubMed] [Google Scholar]
  3. Armstrong C. M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977 Nov;70(5):567–590. doi: 10.1085/jgp.70.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Armstrong C. M. Sodium channels and gating currents. Physiol Rev. 1981 Jul;61(3):644–683. doi: 10.1152/physrev.1981.61.3.644. [DOI] [PubMed] [Google Scholar]
  5. Dubois J. M., Bergman C. Late sodium current in the node of Ranvier. Pflugers Arch. 1975;357(1-2):145–148. doi: 10.1007/BF00584552. [DOI] [PubMed] [Google Scholar]
  6. Dubois J. M., Khodorov B. I. Batrachotoxin protects sodium channels from the blocking action of oenanthotoxin. Pflugers Arch. 1982 Oct;395(1):55–58. doi: 10.1007/BF00584968. [DOI] [PubMed] [Google Scholar]
  7. Dubois J. M., Schneider M. F. Kinetics of intramembrane charge movement and sodium current in frog node of Ranvier. J Gen Physiol. 1982 Apr;79(4):571–602. doi: 10.1085/jgp.79.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hille B., Woodhull A. M., Shapiro B. I. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):301–318. doi: 10.1098/rstb.1975.0011. [DOI] [PubMed] [Google Scholar]
  10. Horowicz P., Schneider M. F. Membrane charge movement in contracting and non-contracting skeletal muscle fibres. J Physiol. 1981 May;314:565–593. doi: 10.1113/jphysiol.1981.sp013725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Khodorov B. I., Neumcke B., Schwarz W., Stämpfli R. Fluctuation analysis of Na+ channels modified by batrachotoxin in myelinated nerve. Biochim Biophys Acta. 1981 Oct 20;648(1):93–99. doi: 10.1016/0005-2736(81)90128-0. [DOI] [PubMed] [Google Scholar]
  12. Khodorov B. I., Peganov E. M., Revenko S. V., Shishkova L. D. Sodium currents in voltage clamped nerve fiber of frog under the combined action of batrachotoxin and procaine. Brain Res. 1975 Feb 14;84(3):541–546. doi: 10.1016/0006-8993(75)90771-4. [DOI] [PubMed] [Google Scholar]
  13. Khodorov B. I., Revenko S. V. Further analysis of the mechanisms of action of batrachotoxin on the membrane of myelinated nerve. Neuroscience. 1979;4(9):1315–1330. doi: 10.1016/0306-4522(79)90159-3. [DOI] [PubMed] [Google Scholar]
  14. Narahashi T., Albuquerque E. X., Deguchi T. Effects of batrachotoxin on membrane potential and conductance of squid giant axons. J Gen Physiol. 1971 Jul;58(1):54–70. doi: 10.1085/jgp.58.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neumcke B., Nonner W., Stämpfli R. Asymmetrical displacement current and its relation with the activation of sodium current in the membrane of frog myelinated nerve. Pflugers Arch. 1976 Jun 22;363(3):193–203. doi: 10.1007/BF00594601. [DOI] [PubMed] [Google Scholar]
  16. Nonner W. Relations between the inactivation of sodium channels and the immobilization of gating charge in frog myelinated nerve. J Physiol. 1980 Feb;299:573–603. doi: 10.1113/jphysiol.1980.sp013143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES